|本期目录/Table of Contents|

[1]罗爽,谢天,刘忠川,等.漆酶/介体系统研究进展[J].应用与环境生物学报,2015,21(06):987-995.[doi:10.3724/SP.J.1145.2015.09021]
 LUO Shuang,XIE Tian,LIU Zhongchuan,et al.Laccase-mediator system: a review[J].Chinese Journal of Applied & Environmental Biology,2015,21(06):987-995.[doi:10.3724/SP.J.1145.2015.09021]
点击复制

漆酶/介体系统研究进展()
分享到:

《应用与环境生物学报》[ISSN:1006-687X/CN:51-1482/Q]

卷:
21卷
期数:
2015年06期
页码:
987-995
栏目:
环境污染生态及生物治理和修复专栏
出版日期:
2015-12-25

文章信息/Info

Title:
Laccase-mediator system: a review
作者:
罗爽 谢天 刘忠川 王刚刚
1中国科学院成都生物研究所中国科学院环境与应用微生物重点实验室 成都 610041 2中国科学院成都生物研究所环境微生物四川省重点实验室 成都 610041 3中国科学院大学 北京 100049
Author(s):
LUO Shuang XIE Tian LIU Zhongchuan WANG Ganggang
1Key Laboratory of Environmental and Applied Microbiology of Chinese Academy of Sciences, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China 2Key Laboratory of Environmental Microbiology of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China 3University of Chinese Academy of Sciences, Beijing 100049, China
关键词:
漆酶介体氧化机制漆酶/介体系统漆酶稳定性工业应用
Keywords:
laccase mediator oxidation mechanism LMS laccase stability industrial application
分类号:
Q554 : X17
DOI:
10.3724/SP.J.1145.2015.09021
文献标志码:
A
摘要:
漆酶是一种多酚氧化酶,可以催化氧化多种酚类和非酚类底物,在木质纤维素降解、环境污染物生物降解或转化等领域具有潜在的应用价值,被认为是一种绿色环保、经济安全的酶催化剂. 然而,氧化还原电势低等因素限制了漆酶的应用. 小分子介体的发现,能有效提高漆酶的反应效率,扩大其作用范围,因而漆酶/介体系统(Laccase-mediator system,LMS)的研究和应用日益受到关注. 本文详细论述了介体的性质和分类、LMS的氧化机制和工业应用以及LMS与漆酶稳定性等内容. 目前常用的介体分为3类,包括人工合成介体、酚酸类天然介体以及多金属氧酸盐等其它介体. 相比于其他两类介体,天然介体的来源更广,价格低廉,低毒,辅助漆酶催化效率更高. 在LMS中,介体参与反应的机制可分为3类:1)氢原子转移机制(Hydrogen atom transfer,HAT);2)电子转移机制(Electron transfer,ET);3)化学离子机制(Ionic mechanism type,IM). 本文从3个方面探讨了漆酶/介体系统的应用:在纸浆漂白方面,漆酶/介体系统能提高木材及非木材的纸浆漂白率,提高漆酶对木质素的降解能力,并可优化纸浆性能及有效去除胶黏物;在染料脱色方面,LMS能有效去除顽固性染料;在污染物去除方面,LMS能高效降解顽固性污染物及羟基多氯联苯(Hydroxy polychlorinated biphenyls)污染物. 本文还讨论了LMS中漆酶的稳定性问题,相比于合成介体,天然介体应用于LMS中更有利于漆酶的稳定. 然而,漆酶/介体系统仍存在介体重复利用低、介体与底物摩尔比值偏高等问题. 希望未来进一步研究的重心集中于LMS中的漆酶介体再生及漆酶稳定性.
Abstract:
Laccase is a polyphenol oxidase being able to oxidize phenolic and non-phenolic substrates. Though hindered by its low redox potential and substrate accessibility, laccase as an environment-friendly enzyme, has been employed in various industrial processes including lignin degradation, biodegradation or transformation of environmental pollutants. Discovery of the mediator for laccase greatly relieved such hindrance of its application. The laccase-mediator system (LMS) strengthens the capability of laccase and enlarges its substrate accessibility. In this paper, the characteristic and classification of mediator, the mechanisms of LMS, industrial applications and laccase stability were reviewed. Currently, the mediators are classified into three categories, namely the synthetic mediator, the natural mediator and the others (e.g. polyoxometalates, POM). Compared to the other two mediators, the natural mediators are cost-effective, less toxic, more efficient and easily available. Three mechanisms have been proposed for the function of mediators in LMS: 1) hydrogen atom transfer (HAT); 2) electron transfer (ET); and 3) ionic mechanism type (IM). The laccase-mediator system has been found useful for diverse biotechnological applications. Laccase-mediator system functions efficiently not only in bleaching wood pulp and non-wood pulp but also in improving pulp properties. In addition, the LMS performs excellently in removing stubborn dyes and degrading refractory pollutants and hydroxy polychlorinated biphenyls contamination. In addition, the addition of natural mediator could increase the stability of laccase in the LMS. However, the high ratio of the mediator to substrate and the regeneration of the mediator in the LMS are still problems to be solved, which demand extensive investigation in further studies.

参考文献/References:

1 Solomon EI, Sundaram UM, Machonkin TE. Multicopper oxidases and oxygenases [J]. Chem Rev, 1996, 96: 2563-2606
2 Yoshida H. Chemistry of lacquer (urushi) Part I [J]. J Chem Soc, 1883, 43 (1): 472-486
3 DriksA. Bacllius subtilis spore coat [J]. Microbiol Mol Biol Rev, 1999, 63: 1-20
4 Gianfreda L, Xu F, Bollag J-M. Laccases: a useful group of oxidoreductive enzymes [J]. Bioremed J, 1999, 3: 1-26
5 Dittmer NT, Suderman RJ, Jiang H, Zhu YC, Gorman MJ, Kramer KJ, Kanost MR. Characterization of cDNAs encoding putative laccase-like multicopper oxidases and developmental expression in the tobacco hornworm, Manduca sexta, and the malaria mosquito, Anopheles gambiae [J]. Insect Biochem Mol Biol, 2004, 34: 29-41
6 Otto B, Schlosser D, Reisser W. First description of a laccase-like enzyme in soil algae [J]. Arch Microbiol, 2010, 192: 759-768
7 Bao W, O’Malley DM, Whetten R, Sederoff RR. A laccase associated with lignification in loblolly pine xylem [J]. Science, 1993, 260: 672-674
8 刘忠川, 王刚刚. 真菌漆酶结构与功能研究进展[J]. 生物物理学报, 2013, 29 (8): 629-645 [Liu ZC, Wang GG. Fungal laccases: structure-based function and mechanism [J]. Acta Biophys Sin, 2013, 29 (8): 629-645
9 Giardina P, Faraco V, Pezzella C, Piscitelli A, Vanhulle S, Sannia G. Laccases: a never-ending story [J]. Cell Mol Life Sci, 2010, 67: 369-385
10 Morozova O, Shumakovich G, Gorbacheva M, Shleev S, Yaropolov A. “Blue” laccases [J]. Biochemistry (Moscow), 2007, 72: 1136-1150
11 Piontek K, Antorini M, Choinowski T. Crystal structure of a laccase from the fungusTrametes versicolor at 1.90-? resolution containing a full complement of coppers [J]. J Biol Chem, 2002, 277: 37663-37669
12 Dwivedi UN, Singh P, Pandey VP, Kumar A. Structure-function relationship among bacterial, fungal and plant laccases [J]. J Mol Catal B-Enzym, 2011, 68: 117-128
13 Bajpai P. Application of enzymes in the pulp and paper industry [J]. Biotechnol Progr, 1999, 15: 147-157
14 Canas AI, Camarero S. Laccases and their natural mediators: biotechnological tools for sustainable eco-friendly processes [J]. Biotechnol Adv, 2010, 28: 694-705
15 Moldes D, Lorenzo M, Sanromán M?. Degradation or polymerisation of phenol red dye depending to the catalyst system used [J]. Process Biochem, 2004, 39: 1811-1815
16 Fernaud JH, Carnicero A, Perestelo F, Cutuli MH, Arias E, Falcón M. Upgrading of an industrial lignin by using laccase produced by Fusarium proliferatum and different laccase-mediator systems [J]. Enzyme Microb Technol, 2006, 38: 40-48
17 Mita N, Tawaki Si, Uyama H, Kobayashi S. Laccase-catalyzed oxidative polymerization of phenols [J]. Macromol Biosci, 2003, 3: 253-257
18 Marjasvaara A, Torvinen M, Kinnunen H, Vainiotalo P. Laccase-catalyzed polymerization of two phenolic compounds studied by matrix-assisted laser desorption/ionization time-of-flight and electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry with collision-induced dissociation experiments [J]. Biomacromolecules, 2006, 7: 1604-1609
19 Ressine A, Vaz-Domínguez C, Fernandez VM, De Lacey AL, Laurell T, Ruzgas T, Shleev S. Bioelectrochemical studies of azurin and laccase confined in three-dimensional chips based on gold-modified nano-/microstructured silicon [J]. Biosens Bioelectr, 2010, 25: 1001-1007
20 Arzola KG, Gimeno Y, Arévalo M, Falcón M, Creus AH. Electrochemical and AFM characterization on gold and carbon electrodes of a high redox potential laccase from Fusarium proliferatum [J]. Bioelectrochemistry, 2010, 79: 17-24
21 Torrecilla JS, Mena ML, Yanez-Sedeno P, Garcia J. Quantification of phenolic compounds in olive oil mill wastewater by artificial neural network/laccase biosensor [J]. J Agric Food Chem, 2007, 55: 7418-7426
22 Gamella M, Campuzano S, Reviejo AJ, Pingarron JM. Electrochemical estimation of the polyphenol index in wines using a laccase biosensor [J]. J Agric Food Chem, 2006, 54: 7960-7967
23 Camarero S, Ibarra D, Martinez AT, Romero J, Gutierrez A, del Rio JC. Paper pulp delignification using laccase and natural mediators [J]. Enzyme Microb Technol, 2007, 40: 1264-1271
24 Bourbonnais R, Paice MG, Freiermuth B, Bodie E, Borneman S. Reactivities of various mediators and laccases with kraft pulp and lignin model compounds [J]. Appl Environ Microbiol, 1997, 63: 4627-4632
25 Speranza M, Ibarra D, Romero J, Martinez A, Martínez MJ, Camarero S. Microscopy studies reveal delignification and sterol removal from eucalypt kraft pulps by laccase-HBT [J]. Biocatal Biotransf, 2007, 25: 251-259
26 Riva S. Laccases: blue enzymes for green chemistry [J]. Trends Biotechnol, 2006, 24: 219-226
27 Couto SR, Herrera JLT. Industrial and biotechnological applications of laccases: a review [J]. Biotechnol Adv, 2006, 24: 500-513
28 Calafell M, Díaz C, Hadzhiyska H, Gibert JM, Dagà JM, Tzanov T. Bio-catalyzed coloration of cellulose fibers [J]. Biocatal Biotransf, 2007, 25: 336-340
29 Champagne P-P, Ramsay J. Reactive blue 19 decolouration by laccase immobilized on silica beads [J]. Appl Microbiol Biotechnol, 2007, 77: 819-823
30 Svobodová K, Majcherczyk A, Novotn? ?, Kües U. Implication of mycelium-associated laccase from Irpex lacteus in the decolorization of synthetic dyes [J]. Bioresour Technol, 2008, 99: 463-471
31 冯娟, 覃炎锋, 李荷. 漆酶基因lac1338在大肠杆菌中的表达条件优化及其染料降解作用[J]. 应用与环境生物学报, 2014, 20 (6): 1076-1081 [Feng J, Qin YF, Li H. Expression optimization and dye degradation of laccase gene lac1338 in Escherichia coli. Chin J Appl Environ Biol, 2014, 20 (6) : 1076-1081]
32 Bourbonnais R, Paice MG. Demethylation and delignification of kraft pulp by trametes-versicolor laccase in the presence of 2, 2’-Azinobis-(3-ethylbenzthiazoline-6-sufonate) [J]. Appl Microbiol Biotechnol, 1992, 36: 823-827
33 Bourbonnais R, Paice MG. oxidation of nonphenolic substrates-an expanded role for laccase in lignin biodegradation [J]. Febs Lett, 1990, 267: 99-102
34 Li KC, Helm RF, Eriksson KEL. Mechanistic studies of the oxidation of a non-phenolic lignin model compound by the laccase/l-hydroxybenzotriazole redox system [J]. Biotechnol Appl Biochem, 1998, 27: 239-243
35 Sigoillot C, Record E, Belle V, Robert JL, Levasseur A, Punt PJ, van den Hondel C, Fournel A, Sigoillot JC, Asther M. Natural and recombinant fungal laccases for paper pulp bleaching [J]. Appl Microbiol Biotechnol, 2004, 64: 346-352
36 王习文, 詹怀宇. 漆酶/介体系统生物漂白技术[J]. 西南造纸, 2002 (3): 7-10 [Wang XW, Zhan HY. Laccase-mediator system in biological bleaching technology [J]. Southwest Pulp Pape, 2002 (3): 7-10]
37 Kawai S, Umezawa T, Higuchi T. < Original> Oxidation of methoxylated benzyl alcohols by laccase of Coriolus versicolor in the presence of syringaldehyde [J]. Wood Res , 1989, 76: 10-16
38 高千千, 朱启忠. 漆酶-介体体系(LMS)及其应用[J]. 环境工程, 2009: 598-602, 16 [Gao QQ, Zhu QZ. Laccase-mediator system (LMS) and its application [J]. Environ Eng, 2009: 598-602, 16]
39 Camarero S, Ibarra D, Martinez MJ, Martinez AT. Lignin-derived compounds as efficient laccase mediators for decolorization of different types of recalcitrant dyes [J]. Appl Environ Microbiol, 2005, 71: 1775-1784
40 Tavares AP, Gamelas JA, Gaspar AR, Evtuguin DV, Xavier AM. A novel approach for the oxidative catalysis employing polyoxometalate–laccase system: application to the oxygen bleaching of kraft pulp [J]. Catal Commun, 2004, 5: 485-489
41 孔凡功, 詹怀宇, 王守娟, 付时雨. 多金属氧酸盐用于纸浆漂白的研究进展[J]. 中国造纸, 2006, 25 (3): 47-51 [Kong FG, Zan HY, Wang SJ, Fu SY. Application of polyoxometalates in pulp delignification [J]. China Acad J Electr Pulping House, 2006, 25 (3): 47-51 ]
42 Gamelas JA, Tavares AP, Evtuguin DV, Xavier AM. Oxygen bleaching of kraft pulp with polyoxometalates and laccase applying a novel multi-stage process [J]. J Mol Catal B: Enzym, 2005, 33: 57-64
43 Gamelas J, Pontes A, Evtuguin D, Xavier A, Esculcas A. New polyoxometalate–laccase integrated system for kraft pulp delignification [J]. Biochem Eng J, 2007, 33: 141-147
44 Carneiro A, Abreu A, Evtuguin DV, Neto CP, Guebitz G, Paulo AC. Polyoxometalates as promoters of laccase-assisted reactions [J]. J Mol Catal B: Enzym, 2000, 9: 293-295
45 Johannes C, Majcherczyk A. Natural mediators in the oxidation of polycyclic aromatic hydrocarbons by laccase mediator systems [J]. Appl Environ Microbiol, 2000, 66: 524-528
46 d’Acunzo F, Galli C. First evidence of catalytic mediation by phenolic compounds in the laccase-induced oxidation of lignin models [J]. European J Biochem, 2003, 270: 3634-3640
47 Morozova OV, Shumakovich GP, Shleev SV, Yaropolov YI. Laccase-mediator systems and their applications: a review [J]. Appl Biochem Microbiol, 2007, 43: 523-535
48 Eggert C, Temp U, Dean JF, Eriksson K-EL. A fungal metabolite mediates degradation of non-phenolic lignin structures and synthetic lignin by laccase [J]. FEBS Lett, 1996, 391: 144-148
49 Luo XL, Zan HY, Fu SY, Yao Z. Separation and GC-MS analysis of low-molecular-weight phenolic compounds from black liquor of eucalyptus urophylla kraft pulping [J]. Chem Ind For Prod, 2009, 29: 53-58
50 Gutierrez A, Rencoret J, Ibarra D, Molina S, Camarero S, Romero J, Del Rio JC, Martinez AT. Removal of lipophilic extractives from paper pulp by laccase and lignin-derived phenols as natural mediators [J]. Environ Sci Technol, 2007, 41: 4124-4129
51 Moldes D, Diaz M, Tzanov T, Vidal T. Comparative study of the efficiency of synthetic and natural mediators in laccase-assisted bleaching of eucalyptus kraft pulp [J]. Bioresour Technol, 2008, 99: 7959-7965
52 Aracri E, Colom JF, Vidal T. Application of laccase-natural mediator systems to sisal pulp: an effective approach to biobleaching or functionalizing pulp fibres? [J]. Bioresour Technol, 2009, 100: 5911-5916
53 Camarero S, Canas AI, Nousiainen P, Record E, Lomascolo A, Jesus Martinez M, Martinez AT. p-hydroxycinnamic acids as natural mediators for laccase oxidation of recalcitrant compounds [J]. Environ Sci Technol, 2008, 42: 6703-6709
54 Xie T, Liu ZC, Liu Q, Wang GG. Structural insight into the oxidation of sinapic acid by CotA laccase [J]. J Struct Biol, 2015, 190 (2): 155-161
55 Khlifi R, Mechichi T, Sayadi S, Dhouib A. Effect of natural mediators on the stability of Trametes trogii laccase during the decolourization of textile wastewaters [J]. J Microbiol (Seoul, Korea), 2012, 50: 226-234
56 Balakshin M, Chen C-L, Gratzl JS, Kirkman AG, Jakob H. Biobleaching of pulp with dioxygen in laccase-mediator system—effect of variables on the reaction kinetics [J]. J Mol Catal B: Enzym, 2001, 16: 205-215
57 Kurniawati S, Nicell JA. Efficacy of mediators for enhancing the laccase-catalyzed oxidation of aqueous phenol [J]. Enzyme Microb Technol, 2007, 41: 353-361
58 Arca-Ramos A, Eibes G, Moreira M, Feijoo G, Lema J. Surfactant-assisted two phase partitioning bioreactors for laccase-catalyzed degradation of anthracene [J]. Process Biochem, 2012, 47: 1115-1121
59 Yang H, Sun H, Zhang S, Wu B, Pan B. Potential of acetylacetone as a mediator for Trametes versicolor laccase in enzymatic transformation of organic pollutants [J]. Environ Sci Pollut Res Intern, 2015, 22: 10882-10889
60 Fillat A, Colom JF, Vidal T. A new approach to the biobleaching of flax pulp with laccase using natural mediators [J]. Bioresou Technol, 2010, 101: 4104-4110
61 Mai C, Schormann W, Milstein O, Hüttermann A. Enhanced stability of laccase in the presence of phenolic compounds [J]. Appl Microbiol Biotechnol, 2000, 54: 510-514
62 Cantarella G, Galli C, Gentili P. Oxidation of non-phenolic substrates with the laccase/N-hydroxyacetanilide system: structure of the key intermediate from the mediator and mechanistic insight [J]. New J chem, 2004, 28: 366-372
63 Fabbrini M, Galli C, Gentili P. Comparing the catalytic efficiency of some mediators of laccase [J]. J Mol Catal B: Enzym, 2002, 16: 231-240
64 Galli C, Gentili P. Chemical messengers: mediated oxidations with the enzyme laccase [J]. J Phys Org Chem, 2004, 17: 973-977
65 Bourbonnais R, Leech D, Paice MG. Electrochemical analysis of the interactions of laccase mediators with lignin model compounds [J]. Biochim Biophys Acta, 1998, 1379: 381-390
66 Cantarella G, Galli C, Gentili P. Free radical versus electron-transfer routes of oxidation of hydrocarbons by laccase/mediator systems catalytic or stoichiometric procedures [J]. J Mol Catal B-Enzym, 2003, 22: 135-144
67 Baiocco P, Barreca AM, Fabbrini M, Galli C, Gentili P. Promoting laccase activity towards non-phenolic substrates: a mechanistic investigation with some laccase–mediator systems [J]. Org Biomol Chem, 2003, 1: 191-197
68 Arends I, Li YX, Ausan R, Sheldon RA. Comparison of TEMPO and its derivatives as mediators in laccase catalysed oxidation of alcohols [J]. Tetr Ahed Ron, 2006, 62: 6659-6665
69 Ca?as AI, Alcalde M, Plou F, Martínez MJ, Martínez ?T, Camarero S. Transformation of polycyclic aromatic hydrocarbons by laccase is strongly enhanced by phenolic compounds present in soil [J]. Environ Sci Technol, 2007, 41: 2964-2971
70 Pickard MA, Roman R, Tinoco R, Vazquez-Duhalt R. Polycyclic aromatic hydrocarbon metabolism by white rot fungi and oxidation by Coriolopsisgallica UAMH 8260 laccase [J]. Appl Environ Microb, 1999, 65: 3805-3809
71 Jeon J-R, Murugesan K, Kim Y-M, Kim E-J, Chang Y-S. Synergistic effect of laccase mediators on pentachlorophenol removal by Ganoderma lucidum laccase [J]. Appl Microbiol Biot, 2008, 81: 783-790
72 Kenealy WR, Jeffries TW. Enzyme processes for pulp and paper: a review of recent developments [J]. J Am Chem Soc, 2003, 845: 210-239
73 Roncero M. Obtención de una secuencia” TCF” con la aplicación de ozono y enzimas para el blanqueo de pastas madereras y de origen agrícola. Optimización de la etapa Z. Análisis de los efectos en la fibra celulósica y sus componentes [M]. 2001
74 Camarero S, Garc?a O, Vidal T, Colom J, del R?o JC, Gutiérrez A, Gras JM, Monje R, Mart?nez MJ, Mart?nez ?T. Efficient bleaching of non-wood high-quality paper pulp using laccase-mediator system [J]. Enzyme Microb Tech, 2004, 35: 113-120
75 García O, Camarero S, Colom JF, Martínez ?T, Martínez MJ, Monje R, Vidal T. Optimization of a laccase-mediator stage for TCF bleaching of flax pulp [J]. Holzforschung, 2003, 57: 513-519
76 Eggert C, Temp U, Eriksson K-EL. Laccase is essential for lignin degradation by the white-rot fungus Pycnoporus cinnabarinus [J]. Febs Lett, 1997, 407: 89-92
77 Moldes D, Díaz M, Tzanov T, Vidal T. Comparative study of the efficiency of synthetic and natural mediators in laccase-assisted bleaching of eucalyptus kraft pulp [J]. Bioresour Technol, 2008, 99: 7959-7965
78 Kudanga T, Nyanhongo GS, Guebitz GM, Burton S. Potential applications of laccase-mediated coupling and grafting reactions: a review [J]. Enzyme Microb Technol, 2011, 48: 195-208
79 Young L, Yu J. Ligninase-catalysed decolorization of synthetic dyes [J]. Water Res, 1997, 31: 1187-1193
80 Abadulla E, Tzanov T, Costa S, Robra K-H, Cavaco-Paulo A, Gübitz GM. Decolorization and detoxification of textile dyes with a laccase from Trametes hirsuta [J]. Appl Environ Microbiol, 2000, 66: 3357-3362
81 司静, 崔宝凯, 贺帅, 戴玉成. 微酸多年卧孔菌产漆酶条件优化及其在染料脱色中的应用[J]. 应用与环境生物学报, 2011, 17 (5): 736-741 [Si J, Cui BK, He S , Dai YC. Optimization of conditions for laccase production by perenniporia subacida and its application in dye decolorization. Chin J Appl Environ Biol, 2011, 17 (5): 736-741 ]
82 Claus H, Faber G, K?nig H. Redox-mediated decolorization of synthetic dyes by fungal laccases [J]. Appl Microbiol Biotechnol, 2002, 59: 672-678
83 Call H, Mücke I. History, overview and applications of mediated lignolytic systems, especially laccase-mediator-systems (Lignozym?-process) [J]. J Biotechnol, 1997, 53: 163-202
84 Soares GM, de Amorim MT, Costa-Ferreira M. Use of laccase together with redox mediators to decolourize Remazol Brilliant Blue R [J]. J Biotechnol, 2001, 89: 123-129
85 Couto SR, Sanromán M?. The effect of violuric acid on the decolourization of recalcitrant dyes by laccase from Trametes hirsuta [J]. Dyes Pigments, 2007, 74: 123-126
86 Murugesan K, Yang I-H, Kim Y-M, Jeon J-R, Chang Y-S. Enhanced transformation of malachite green by laccase of Ganoderma lucidum in the presence of natural phenolic compounds [J]. Appl Microbiol Biotechnol, 2009, 82: 341-350
87 Camarero S, Ibarra D, Martínez ?T, Romero J, Gutiérrez A, del Río JC. Paper pulp delignification using laccase and natural mediators [J]. Enzyme Microbiol Technol, 2007, 40: 1264-1271
88 Christian V, Shrivastava R, Shukla D, Modi H, Vyas B. Degradation of xenobiotic compounds by lignin-degrading white-rot fungi: enzymology and mechanisms involved [J]. Indian J Exp Biol, 2005, 43: 301-302
89 Ali KA, Qayyum H. Potential of plant polyphenol oxidases in the decolorization and removal of textile and non-textile dyes [J]. J Environ Sci, 2007, 19: 396-402
90 Vandertol-Vanier H, Vazquez-Duhalt R, Tinoco R, Pickard M. Enhanced activity by poly (ethylene glycol) modification of Coriolopsis gallica laccase [J]. J Ind Microbiol Biotechnol, 2002, 29: 214-220
91 Han MJ, Choi HT, Song HG. Degradation of phenanthrene by Trametes versicolor and its laccase [J]. J Microbiol-Seo, 2004, 42: 94-98
92 Maruyama T, Komatsu C, Michizoe J, Ichinose H, Goto M. Laccase‐Mediated Oxidative Degradation of the Herbicide Dymron [J]. Biotechnol Prog, 2006, 22: 426-430
93 Keum YS, Li QX. Fungal laccase-catalyzed degradation of hydroxy polychlorinated biphenyls [J]. Chemosphere, 2004, 56: 23-30
94 Tominaga J, Michizoe J, Kamiya N, Ichinose H, Maruyama T, Goto M. Factors affecting the oxidative activity of laccase towards biphenyl derivatives in homogeneous aqueous-organic systems [J]. J Biosci Bioeng, 2004, 98: 14-19
95 Kang K-H, Dec J, Park H, Bollag J-M. Transformation of the fungicide cyprodinil by a laccase of Trametes villosa in the presence of phenolic mediators and humic acid [J]. Water Res, 2002, 36: 4907-4915
96 Park J-W, Dec J, Kim J-E, Bollag J-M. Effect of humic constituents on the transformation of chlorinated phenols and anilines in the presence of oxidoreductive enzymes or birnessite [J]. Environ Sci Technol, 1999, 33: 2028-2034
97 Torres-Duarte C, Roman R, Tinoco R, Vazquez-Duhalt R. Halogenated pesticide transformation by a laccase–mediator system [J]. Chemosphere, 2009, 77: 687-692
98 Marco-Urrea E, Pérez-Trujillo M, Blánquez P, Vicent T, Caminal G. Biodegradation of the analgesic naproxen by Trametes versicolor and identification of intermediates using HPLC-DAD-MS and NMR [J]. Bioresour Technol, 2010, 101: 2159-2166

相似文献/References:

[1]韩君莉,郭丽琼,郑晓冰,等.灵芝TR6号漆酶的分离纯化及性质研究[J].应用与环境生物学报,2008,14(01):99.
 HAN Junli,et al..Purification and Characterization of Fungal Laccase from Ganoderma lucidum Strain TR6[J].Chinese Journal of Applied & Environmental Biology,2008,14(06):99.
[2]王维乐,牟志美,张淑君,等.响应面法优化Paraconiothyrium variabile GHJ-4产漆酶发酵条件[J].应用与环境生物学报,2011,17(03):321.[doi:10.3724/SP.J.1145.2011.00321]
 WANG Weile,MU Zhimei,ZHANG Shujun,et al.Optimization of Fermentation Conditions of Paraconiothyrium variabile GHJ-4 for Laccase Production by Response Surface Methodology[J].Chinese Journal of Applied & Environmental Biology,2011,17(06):321.[doi:10.3724/SP.J.1145.2011.00321]
[3]司静,崔宝凯,贺帅,等.微酸多年卧孔菌产漆酶条件优化及其在染料脱色中的应用[J].应用与环境生物学报,2011,17(05):736.[doi:10.3724/SP.J.1145.2011.00736]
 SI Jing,CUI Baokai,He Shuai,et al.Optimization of Conditions for Laccase Production by Perenniporia subacida and Its Application in Dye Decolorization[J].Chinese Journal of Applied & Environmental Biology,2011,17(06):736.[doi:10.3724/SP.J.1145.2011.00736]
[4]刘悦萍,王子健,崔凯,等.一种野生香蘑的分离、鉴定、培养条件与产酶特性[J].应用与环境生物学报,2012,18(05):804.[doi:10.3724/SP.J.1145.2012.00804]
 LIU Yueping,WANG Zijian,CUI Kai,et al.Isolation, Identification, Culture Conditions, and Enzyme Production of a Wild Mushroom Lepista sp.[J].Chinese Journal of Applied & Environmental Biology,2012,18(06):804.[doi:10.3724/SP.J.1145.2012.00804]
[5]秦改娟,马济丰,陈青君,等.一种田头菇属真菌新记录种的生物学与产酶特性[J].应用与环境生物学报,2014,20(01):148.[doi:10.3724/SP.J.1145.2014.00148]
 QIN Gaijuan,MA Jifeng,CHEN Qingjun,et al.Biological characteristics and enzyme production of a newly recorded species of Agrocybe[J].Chinese Journal of Applied & Environmental Biology,2014,20(06):148.[doi:10.3724/SP.J.1145.2014.00148]
[6]夏玉林 冯 娟 李 荷.响应面法优化漆酶基因lac1338表达漆酶的发酵条件[J].应用与环境生物学报,2016,22(02):219.[doi:10.3724/SP.J.1145.2015.06023]
 XIA Yulin,FENG Juan & LI He**.Optimizing fermentation conditions for the expression of laccase gene lac1338by response surface methodology*[J].Chinese Journal of Applied & Environmental Biology,2016,22(06):219.[doi:10.3724/SP.J.1145.2015.06023]
[7]沈柯宇,张西蓓,秦 澎,等.4种重金属对灵芝漆酶活性及转录表达的影响[J].应用与环境生物学报,2017,23(03):448.[doi:2016.08004]
 SHEN Keyu,ZHANG Xibei,QIN Peng,et al.Enzymatic activity and transcription of Ganoderma lucidum laccases following treatment with four heavy metals[J].Chinese Journal of Applied & Environmental Biology,2017,23(06):448.[doi:2016.08004]
[8]胡渤洋,王寿南,陈青君,等.一种白腐真菌的分离、鉴定、培养及产漆酶条件[J].应用与环境生物学报,2018,24(02):367.[doi: 10.19675/j.cnki.1006-687x.2017.05024]
 HU Boyang,WANG Shounan,CHEN Qingjun,et al.Isolation, identification, culture conditions, and laccase production of white rot fungus[J].Chinese Journal of Applied & Environmental Biology,2018,24(06):367.[doi: 10.19675/j.cnki.1006-687x.2017.05024]
[9]秦澎,李津,辜运富,等.香菇生长发育过程中漆酶基因家族的转录表达[J].应用与环境生物学报,2018,24(02):379.[doi: 10.19675/j.cnki.1006-687x.2017.03010]
 QIN Peng,LI Jin,GU Yunfu,et al.Transcriptional expression profiles of the laccase gene family in different development stages of Lentinus edodes[J].Chinese Journal of Applied & Environmental Biology,2018,24(06):379.[doi: 10.19675/j.cnki.1006-687x.2017.03010]

备注/Memo

备注/Memo:
中国科学院百人计划项目、中国科学院西部之光项目和中国科学院环境与应用微生物重点实验室开放课题(KLCAS-2014-06)资助 Supported by the 100 Talents Program of the Chinese Academy of Sciences (CAS), the Western Light Talent Culture Project of CAS, and the Key Laboratory of Environmental and Applied Microbiology, CAS (KLCAS-2014-06)
更新日期/Last Update: 2016-01-04