|本期目录/Table of Contents|

[1]熊 亮 程 诚 李 凯 赵心清** 白凤武.菊芋秸秆高浓度物料分步糖化及乙醇发酵[J].应用与环境生物学报,2016,22(03):382-387.[doi:10.3724/SP.J.1145.2015.09018]
 XIONG Liang,CHENG Cheng,LI Kai,et al.Separated saccharification and ethanol fermentation of Jerusalem artichoke with high solid loading*[J].Chinese Journal of Applied & Environmental Biology,2016,22(03):382-387.[doi:10.3724/SP.J.1145.2015.09018]
点击复制

菊芋秸秆高浓度物料分步糖化及乙醇发酵()
分享到:

《应用与环境生物学报》[ISSN:1006-687X/CN:51-1482/Q]

卷:
22卷
期数:
2016年03期
页码:
382-387
栏目:
研究论文
出版日期:
2016-06-25

文章信息/Info

Title:
Separated saccharification and ethanol fermentation of Jerusalem artichoke with high solid loading*
作者:
熊 亮1 程 诚1 李 凯2 赵心清2** 白凤武12
1大连理工大学生命科学与技术学院 大连 116024 2上海交通大学生命科学技术学院 上海 200240
Author(s):
XIONG Liang1 CHENG Cheng1 LI Kai2 ZHAO Xinqing2** & BAI Fengwu12
1School of Life Science and Biotechnology, Dalian University of Technology, Dalian 116023, China 2School of Life Science and Biotechnology, Shanghai?Jiao?Tong?University, Shanghai 200240, China
关键词:
菊芋秸秆预处理分步水解发酵重组酿酒酵母纤维素乙醇
Keywords:
Jerusalem artichoke stalk pretreatment separated hydrolysis and fermentation recombinant Saccharomyces cerevisiae cellulosic ethanol.
分类号:
TQ353 : TQ920
DOI:
10.3724/SP.J.1145.2015.09018
摘要:
菊芋是生物能源和生物炼制的新型原料作物,具有和其他作物不同的秸秆组成. 为了解菊芋秸秆的生物转情况,本研究首先比较了NaOH-H2O2、瞬间弹射蒸汽爆破(ICSE)及NaOH-H2O2和ICSE联用等3种预处理方法,证明对于菊芋秸秆NaOH-H2O2预处理法简单高效. 进一步研究显示,NaOH-H2O2预处理过程中水洗一次即可显著促进酶解和后续发酵. 利用分批补料和补加纤维素酶的方式进行高物料浓度条件下预处理菊芋秸秆的分步水解和乙醇发酵,当物料浓度达到30%(m/V)时,水解72 h的葡萄糖和木糖浓度分别可达143.6 g/L和36.2 g/L. 利用木糖-葡萄糖共发酵重组酿酒酵母菌株LX03在菊芋秸秆水解液中进行乙醇发酵,发酵72 h乙醇最高浓度达66.2 g/L(8.27%,V/V),且发酵总糖利用率达86.9%. 本研究利用菊芋秸秆水解液发酵获得较高的乙醇产量,为进一步利用菊芋秸秆进行高效生物炼制及高浓度纤维素乙醇生产提供了参考. (图3 表1 参23)
Abstract:
As a novel alternative lignocellulosic feedstock for biorefinery, Jerusalem artichoke stalks (JAS) has different cellulosic compositions from the stalks of agriculture crops, however, studies on the bioconversion of JAS are still limited. It is crucial to optimize the pretreatment technology of JAS and to further study fuel ethanol fermentation from JAS hydrolysate with recombinant Saccharomyces cerevisiae. In this work, JAS was pretreated using NaOH-H2O2, instant catapult steam explosion (ICSE), and sequential ICSE and NaOH-H2O2 treatment. It was found that NaOH-H2O2 pretreatment method was the best for the pretreatment of JAS. The results also showed that washing the pretreated JAS for only one time was sufficient, significantly benefited the hydrolysis and fermentation process, and reduced waste water. Finally, separated hydrolysis and fermentation of pretreated JAS with high solid loading by feeding of both JAS substrate and enzyme was investigated. When the solid loading reached 30% (m/V), 143.6 g/L glucose and 36.2 g/L xylose were obtained after 72-hour hydrolysis. When the hydrolysate was subject to fermentation by employing the recombinant S. cerevisiae strain LX03, ethanol titer of 66.2 g/L (8.27%, V/V) was achieved with total sugar consumption ratio of 86.9%. The results in this study provide insights for the improvement of bioconversion efficiency of JAS and high titer cellulosic ethanol production by recombinant S. cerevisiae using JAS.

参考文献/References:

1 李科, 靳艳玲, 甘明哲, 刘晓风, 赵海. 木质纤维素生产燃料乙醇的关键技术研究现状[J]. 应用与环境生物学报, 2008, 14 (6): 877-884 [Li K, Jin YL, Gan MZ, Liu XF, Zhao H. Progress in research of key techniques for ethanol production from lignocellulose. Chin J Appl Environ Biol, 2008, 14 (6): 877-884] 2 李勇昊, 张晓月, 程诚, 袁文杰, 赵心清, 白凤武. 菊芋全植株生产燃料乙醇的工艺探讨 [J]. 生物产业技术, 2014 (6): 23-29 [Li YH, Zhang XY, Cheng C, Xiong L, Yuan WJ, Zhao XQ, Bai FW. Exploration of the process for fuel ethanol production from Jerusalem artichoke whole plant [J]. Biotechnol Biobusiness, 2014, (6): 23-29] 3 Kim S, Kim CH. Evaluation of whole Jerusalem artichoke (Helianthus tuberosus L.) for consolidated bioprocessing ethanol production [J]. Renew Energy, 2014, 65: 83-91 4 Kim S, Park JM, Kim CH. Ethanol production using whole plant biomass of Jerusalem artichoke by Kluyveromyces marxianus CBS1555 [J]. Appl Biochem Biotechnol, 2013, 169 (5): 1531-1545 5 沈飞, 王卿, 李阳, 李秀金, Hu JG. 水热亚硫酸预处理菊芋秸秆的高浓底物酶水解试验[J]. 农业机械学报, 2014, 45 (3): 168-173 [Shen F, Wang Q, Li Y, Li XJ, Hu JG. Relatively high-substrate consistency hydrolysis of hydrothermal pretreated Jerusalem artichoke stalk with H2SO3 catalysis [J]. Trans Chin Soc Agric Mach, 2014, 45 (3): 168-173] 6 Singh J, Suhag M, Dhaka A. Augmented digestion of lignocellulose by steam explosion, acid and alkaline pretreatment methods: a review. Carbohydr Polym, 2015, 117: 624-631 7 Li C, Zhang L, Zhang GQ, Xu JG, Zhang L. Characterization and components separation of corn stover by alkali and hydrogen peroxide treatments [J]. Pol J Chem Technol, 2015, 17 (2): 89-95 8 Yu H, You Y, Lei F, Liu Z, Zhang W, Jiang J. Comparative study of alkaline hydrogen peroxide and organosolv pretreatments of sugarcane bagasse to improve the overall sugar yield [J]. Bioresour Technol, 2015, 187: 161-166 9 Ninomiya K, Omote S, Ogino C, Kuroda K, Noguchi M, Endo T, Kakuchi R, Shimizu N, Takahashi K. Saccharification and ethanol fermentation from cholinium ionic liquid-pretreated bagasse with a different number of post-pretreatment washings [J]. Bioresour Technol, 2015, 189: 203-209 10 Toquero C, Bolado S. Effect of four pretreatments on enzymatic hydrolysis and ethanol fermentation of wheat straw. Influence of inhibitors and washing. Bioresour Technol, 2014, 157: 68-76 11 Qin L, Liu ZH, Jin M, Li BZ, Yuan YJ. High temperature aqueous ammonia pretreatment and post-washing enhance the high solids enzymatic hydrolysis of corn stover [J]. Bioresour Technol, 2013, 146: 504-511 12 Lynd LR, Weimer PJ, van Zyl WH, Pretorius IS. Microbial cellulose utilization: fundamentals and biotechnology [J]. Microbiol Mol Biol Rev, 2002, 66 (3): 506-577 13 Zhang J, Chu DQ, Huang J, Yu ZC, Dai GC, Bao J. Simultaneous saccharification and ethanol fermentation at high corn stover solids loading in a helical stirring bioreactor [J]. Biotechnol Bioeng, 2010, 105 (4): 718-728 14 Yang MH, Li WL, Liu BB, Li Q, Xing JM. High-concentration sugars production from corn stover based on combined pretreatments and fed-batch process [J]. Bioresour Technol, 2010, 101 (13): 4884-4888 15 Gao YS, Xu JJ, Yuan ZH, Zhang Y, Liu YY, Liang CY. Optimization of fed-batch enzymatic hydrolysis from alkali-pretreated sugarcane bagasse for high-concentration sugar production [J]. Bioresour Technol, 2014, 167: 41-45 16 Olofsson K, Palmqvist B, Liden G. Improving simultaneous saccharification and co-fermentation of pretreated wheat straw using both enzyme and substrate feeding [J]. Biotechnol Biofuels, 2010, 3: 17 17 Zuo Q, Zhao XQ, Xiong L, Liu HJ, Xu YH, Hu SY, Ma ZY, Zhu QW, Bai FW. Fine-tuning of xylose metabolism in genetically engineered Saccharomyces cerevisiae by scattered integration of xylose assimilation genes [J]. Biochem Biophys Res Commun, 2013, 440 (2): 241-244 18 袁文杰, 陈丽杰, 孔亮, 孜力汗, 任建刚, 白凤武. rDNA介导的菊粉酶基因整合载体构建及在K. marxianus中应用[J]. 大连理工大学学报, 2013, 53 (2): 176-182 [Yuan WJ, Chen LJ, Kong L, Zi LH, Bai FW. Construction of INU gene integration vector at rDNA targeting locus and its application to K. marxianus [J]. J Dalian Univ Technol, 2013, 53 (2): 176-182] 19 张红漫, 郑荣平, 陈敬文, 黄和. NREL法测定木质纤维素原料组分的含量[J]. 分析实验室, 2010, 29 (11): 15-18 [Zhang HM, Zheng RP, Chen JW, Huang H. Investigation on the determination of lignocellulosics components by NREL method [J]. Chin J Anal Lab, 2010, 29 (11): 15-18] 20 刘黎阳, 郝学密, 刘晨光, 白凤武. 瞬间弹射蒸汽爆破联用化学法预处理玉米秸秆的组分和酶解分析[J]. 化工学报, 2014, 65 (11): 4557-4563 [Liu LY, Hao XM, Liu CG, Bai FW. Evaluation of instant catapult steam explosion combined with chemical pretreatments on corn stalk by components and enzymatic hydrolysis analysis [J]. CIESC J, 2014, 65 (11): 4557-4563] 21 Liu CG, Liu LY, Zi LH, Zhao XQ, Xu YH, Bai FW. Assessment and regression analysis on instant catapult steam explosion pretreatment of corn stover [J]. Bioresour Technol, 2014, 166: 368-372 22 J?nsson LJ, Alriksson B, Nilvebrant NO. Bioconversion of lignocellulose: inhibitors and detoxification [J]. Biotechnol Biofuels, 2013, 6: 16 23 苟梓希, 李云成, 谢采芸, 汤岳琴, 木田建次. 工业酿酒酵母菌株KF-7对发酵抑制物的耐受性[J]. 应用与环境生物学报, 2015, 21 (2): 248-255 [Gou ZX, Li YL, Xie CY, Tang YQ, Kida K. Evaluation of the inhibitor-tolerance of industrial Saccharomyces cerevisiae strain KF-7 [J]. Chin J Appl Environ Biol, 2015, 21 (2): 248-255]

相似文献/References:

[1]李科,靳艳玲,甘明哲,等.木质纤维素生产燃料乙醇的关键技术研究现状[J].应用与环境生物学报,2008,14(06):877.[doi:10.3724/SP.J.1145.2008.00877]
 LI Ke,JIN Yanling,et al.Progress in Research of Key Techniques for Ethanol Production from Lignocellulose[J].Chinese Journal of Applied & Environmental Biology,2008,14(03):877.[doi:10.3724/SP.J.1145.2008.00877]
[2]刘培旺,袁月祥,闫志英,等.秸秆的不同预处理方法对发酵产氢的影响[J].应用与环境生物学报,2009,15(01):125.[doi:10.3724/SP.J.1145.2009.00125]
 LIU Peiwang,YUAN Yuexiang,YAN Zhiying,et al.Effect of Straw Pretreatments on Bio-hydrogen Production[J].Chinese Journal of Applied & Environmental Biology,2009,15(03):125.[doi:10.3724/SP.J.1145.2009.00125]
[3]甘明哲,靳艳玲,周玲玲,等.适合鲜甘薯原料乙醇发酵的低粘度快速糖化预处理[J].应用与环境生物学报,2009,15(02):260.[doi:10.3724/SP.J.1145.2009.00262]
 GAN Mingzhe,JIN Yanlin,et al.Low Viscosity and Rapid Saccharification Pretreatment of Fresh Sweet Potato for Ethanol Production[J].Chinese Journal of Applied & Environmental Biology,2009,15(03):260.[doi:10.3724/SP.J.1145.2009.00262]
[4]黄玉红,靳艳玲,方扬,等.细胞壁多糖水解酶及其在非粮生物质原料转化中的应用研究进展[J].应用与环境生物学报,2013,19(05):881.[doi:10.3724/SP.J.1145.2013.00881]
 HUANG Yuhong,JIN Yanling,FANG Yang,et al.Application and Progress of Plant Cell Wall Polysaccharide Hydrolase in Non-food Based Biomass Conversation[J].Chinese Journal of Applied & Environmental Biology,2013,19(03):881.[doi:10.3724/SP.J.1145.2013.00881]
[5]张明明 万青青 张克俞 熊 亮 白凤武,赵心清**.过表达分支酸歧化酶编码基因ARO7对酿酒酵母抑制物耐受性的影响*[J].应用与环境生物学报,2016,22(02):201.[doi:10.3724/SP.J.1145.2015.09013]
 ZHANG Mingming,WAN Qingqing,ZHANG Keyu,et al.Effect of overexpression of chorismate mutase encoding gene ARO7 on theinhibitor tolerance of Saccharomyces cerevisiae[J].Chinese Journal of Applied & Environmental Biology,2016,22(03):201.[doi:10.3724/SP.J.1145.2015.09013]

更新日期/Last Update: 2016-06-25