|本期目录/Table of Contents|

[1]冯顺利 徐 辉 李欣然 周火祥 乔代蓉 曹 毅.产油真菌利用甘薯淀粉酶解液发酵的条件优化[J].应用与环境生物学报,2016,22(02):213-218.[doi:10.3724/SP.J.1145.2015.07042]
 FENG Shunli,XU Hui,LI Xinran,et al.Optimization of fermentation conditions for lipid production by fungus withsweet potato starch hydrolysates*[J].Chinese Journal of Applied & Environmental Biology,2016,22(02):213-218.[doi:10.3724/SP.J.1145.2015.07042]





Optimization of fermentation conditions for lipid production by fungus withsweet potato starch hydrolysates*
冯顺利 徐 辉 李欣然 周火祥 乔代蓉 曹 毅
四川大学生命科学学院微生物与代谢工程四川省重点实验室 成都 610065
FENG Shunli XU Hui LI Xinran ZHOU Huoxiang QIAO Dairong & CAO Yi**
Microbiology and Metabolic Engineering Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu 610065, China
Gibberella intermedia sweet potato starch microbial oil fermentation condition optimization
Q939.9 : TK6
为降低微生物发酵产油成本,利用甘薯粗淀粉酶解液为碳源,从10株产油霉菌中筛选到一株能充分利用淀粉糖的菌株(S-1),经5.8S rDNA-ITS序列分析,鉴定其为赤霉菌(Gibberella intermedia). 菌株S-1的初始生物量、油脂含量和油脂产量分别是15.82 g/L、31.51%和4.98 g/L,通过单因素和正交试验优化后分别提高到21.67 g/L、39.87%和8.64g/L,与优化前相比,油脂产量提高了73.5%. 利用GC-MS对发酵提取后的油脂进行脂肪酸成分分析,主要成分为棕榈酸、亚油酸、油酸,与植物油相似,适用于生物柴油的生产,且不饱和脂肪酸含量达89.82%. 本研究表明菌株S-1能够充分利用淀粉酶解液发酵产油,是生物柴油生产的潜在菌株. (图4 表3 参24)
Microbial oil is a potential raw material for biodiesel. In order to reduce the cost of microbial lipid production, it isnecessary to screen high oil producing strain that can make full use of sweet potato starch sugar and optimize the fermentationconditions. In the present study, the strain named Gibberella intermedia (S-1) identified by 5.8S rDNA-ITS sequence wasscreened by using sweet potato starch sugar as carbon source. To optimize the medium composition and fermentationconditions for lipid production by the strain S-1, experiments with single factor and orthogonal test were conducted. The strainS-1 had an initial biomass of 15.82 g/L, lipid content of 31.51% and lipid yield of 4.98 g/L, which increased to 21.67 g/L,39.87% and 8.64 g/L, respectively, after optimization by single factor and orthogonal test. The lipid composition of the strainS-1 was determined by GC-MS. The results showed that the oil similar to vegetable oil, with 89.82% of it unsaturated fattyacid; the main contents were palmitic acid, oleic acid and linoleic acid, suitable to produce biodiesel. This research thereforesuggested that the strain S-1 is able to take full advantage of the relatively cheap raw materials for microbial oil production andis a potential strain for biodiesel production.


1 Sorrell S, Speirs J, Bentley R, Brandt A, Miller R. Global oil depletion:an assessment of the evidence for a near-term peak in global oilproduction [R]//Technology and Policy Assessment Report. London: UKEnergy Research Centre, 20092 Barnard D, Casanueva A, Tuffin M, Cowan D. Extremophiles in biofuelsynthesis [J]. Environ Technol, 2010, 31 (8-9): 871-8883 Vyas AP, Verma JL, Subrahmanyam N. A review on FAME productionprocesses [J]. Fuel, 2010, 89 (1): 1-94 Kitcha S, Cheirsilp B. Screening of oleaginous yeasts and optimizationfor lipid production using crude glycerol as a carbon source [J]. EnergyProcedia, 2011, 9 (1): 1108-11145 Birla A, Singh B, Upadhyay SN, Sharma YC. Kinetics studies of synthesisof biodiesel from waste frying oil using a heterogeneous catalyst derivedfrom snail shell [J]. Bioresour Technol, 2012, 106: 95-1006 Deng X, Han J, Yin F. Net energy, CO2 emission and land-based costbenefitanalyses of Jatropha biodiesel: a case study of the Panzhihuaregion of Sichuan province in China [J]. Energies, 2012, 5: 2150-21647 Beopoulos A, Nicaud JM, Gaillardin C. An overview of lipid metabolismin yeasts and its impact on biotechnological processes [J]. Appl MicrobiolBiotechnol, 2011, 90: 1193-12068 Venkata Mohan S, Prathima Devi M, Mohanakrishna G, Amarnath N,Lenin Babu M, Sarma PN. Potential of mixed microalgae to harnessbiodiesel from ecological water-bodies with simultaneous treatment [J].Bioresour Technol, 2011, 102 (3): 1109-11179 Wahlen BD, Willis RM, Seefeldt LC. Biodiesel production bysimultaneous extraction and conversion of total lipids from microalgae,cyanobacteria, and wild mixed-cultures [J]. Bioresour Technol, 2011,102(3): 2724-273010 刘淑君, 杨文博, 施安辉. 高产油脂酵母菌选育及摇瓶发酵条件的研究[J]. 微生物学通报, 2000, 27 (2): 93-97 [Liu SJ, Yang WB, Shi AH.Screening of the high lipid production strains and studies on its flaskculture conditions [J]. Microbiol China, 2000, 27 (2): 93-97]11 李植峰, 张玲, 沈晓京, 赖炳森, 孙树秦. 四种真菌油脂提取方法的比较研究[J]. 微生物学通, 2001, 28 (6): 72-76 [Li ZF, Zhang L, ShenXJ, Lai BS, Sun SQ. A comparative study on four method of fungi lipidextraction [J]. Microbiol China, 2001, 28 (6): 72-76]12 Miller GL. Use of dinitrosalicylic acid reagent for determination ofreducing sugar [J]. Anal Chem, 1959, 31 (3): 426-42813 Belloch C, Barrio E, Garcia MD, Querol A. Phylogenetic reconstructionof the yeast genus Kluyveromyces: restriction map analysis of the 5.85rRNA gene and the two ribosomal internal transcribed spacers [J].Syst Appl Microbiol, 1998, 21: 266-27314 刘义. 四川地区产油脂微藻筛选分离及其多样性研究[D]. 成都: 四川大学, 2012 [Liu Y. Screen separation and biodiversity of the Sichuanprovince [D]. Chengdu: Sichuan University, 2012]15 Decat E, Van Mechelen E. Rapid and accurate identification ofisolates of Candida species by melting peak and melting curve analysisof the internally transcribed spacer region 2 fragment (ITS2-MCA) [J].Res Microbiol, 2013, 164: 110-11716 Vicente G, Bautista LF, Gutiérrez FJ, Rodríguez R, Martínez V,Rodríguez-Frómeta, RA, Ruiz-Vázquez RM, Torres-Martínez S, GarreV. Direct transformation of fungal biomass from submerged culturesinto biodiesel [J]. Energy Fuels, 2010, 24 (5): 3173-317817 Mamatha S, Ravi R, Venkateswaran G. Medium optimization of gammalinolenic acid production in Mucor rouxii CFR-G15 using RSM [J].FABT, 2008, 1 (4): 405-40918 Koike Y, Jie CH, Higashiyama K, Fujikawa S, Park EY, Effect ofconsumed carbon to nitrogen ratio of mycelial morphology andarachidonic acid production in cultures of Mortierella alpine [J]. J BiolBioeng, 2001, 91 (4): 382-38919 Ruan Z, Zanotti M, Wang X, Ducey C, Liu Y. Evaluation of lipidaccumulation from lignocellulosic sugars by Mortierella isabellinaforbiodiesel production [J]. Bioresour Technol, 2012, 110: 198-20520 Zheng YB, Yu XC, Zeng JJ, Chen SL. Feasibility of ?lamentous fungifor biofuel production using hydrolysate from dilute sulfuric acidpretreatment of wheat straw [J]. Biotechnol Biofuels, 2012, 5 (1): 5021 何容, 赵环, 杨云喜, 徐清锐, 宋涛, 郑洪波. 深黄伞形霉(Umbelopsis isabellina) 华2-1产油发酵培养条件优化[J]. 应用与环境生物学报, 2012, 18 (1): 80-85 [He R, Zhao H, Yang YX, Xu QR, SongT, Zheng HB. Optimization of fermentation and culture conditions ofUmbelopsis isabellina Hua2-1 producing lipid [J]. Chin J Appl EnvironBiol, 2012, 18 (1): 80-85]22 Chen X, Li ZH, Zhang XX, Hu FX, Ryu DDY, Bao J. Screeningof oleaginous yeast strains tolerant to lignocelluloses degradationcompounds [J]. Appl Biochem Biotechnol, 2009, 159 (3): 591- 60423 熊望贤, 杨涛, 刘光烨. 酵红薯淀粉酶解液产油脂的发酵条件[J]. 应用与环境生物学报, 2008, 4 (4): 558-561 [Xong WX, Yang T, Liu G.Fermentation conditions for lipid production by Sporobolomyces reseuswith sweet potato starch hydrolysates [J]. Chin J Appl Environ Biol ,2008, 4 (4): 558-561]24 袁锦云, 艾佐佐, 张志斌, 颜日明, 曾庆桂, 朱笃. 皮状丝孢酵母 B3利用木薯淀粉发酵生产微生物油脂[J]. 生物工程学报, 2011, 27(3): 453-460 [Yuan JY, Ai ZZ, Zhang ZB, Yan RM, Zeng QG, Zhu D.Microbial oil production by Trichosporon cutaneum B3 using cassavastarch [J]. Chin J Biotech, 2011, 27 (3): 453-460]


 WANG Wei,WU Yaohui,LI Jilie & YAO Yuefei.Enhanced gibberellic acid production through the regulation of temperature in batch fermentation[J].Chinese Journal of Applied & Environmental Biology,2017,23(02):432.[doi:2016.07046]

更新日期/Last Update: 2016-04-25