|本期目录/Table of Contents|

[1]张小元,李香真,李家宝.微生物互营产甲烷研究进展[J].应用与环境生物学报,2016,22(01):156-166.[doi:10.3724/SP.J.1145.2015.07033]
 ZHANG Xiaoyuan,,et al.Microbial syntrophic methanogenesis: a review[J].Chinese Journal of Applied & Environmental Biology,2016,22(01):156-166.[doi:10.3724/SP.J.1145.2015.07033]
点击复制

微生物互营产甲烷研究进展()
分享到:

《应用与环境生物学报》[ISSN:1006-687X/CN:51-1482/Q]

卷:
22卷
期数:
2016年01期
页码:
156-166
栏目:
综述
出版日期:
2016-02-25

文章信息/Info

Title:
Microbial syntrophic methanogenesis: a review
作者:
张小元 李香真 李家宝
1中国科学院环境与应用微生物重点实验室 成都 610041
2四川省环境微生物重点实验室 成都 610041
3中国科学院大学 北京 100049
Author(s):
ZHANG Xiaoyuan1 2 3 LI Xiangzhen1 2 & LI Jiabao1 2**
1Key Laboratory of Environmental and Applied Microbiology, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China; 2Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu 610041, China; 3University of Chinese Academy of Sciences, Beijing 100049, China
关键词:
互营代谢产甲烷菌电子传递种间氢气转移种间甲酸转移直接电子传递
Keywords:
syntrophic metabolism methanogen electron transfer interspecies hydrogen transfer interspecies formate transfer direct interspecies electron transfer
分类号:
Q939.9
DOI:
10.3724/SP.J.1145.2015.07033
摘要:
甲烷是仅次于二氧化碳的第二大温室气体,也是典型的可再生资源. 目前大气中的甲烷约有74%来自微生物互营产甲烷过程. 研究微生物互营产甲烷对于控制全球气候变暖和发展清洁能源都具有重要意义. 本文主要对产甲烷菌的类型、互营产甲烷的过程、电子传递等方面进行综述. 典型的有机物厌氧互营氧化要经历3个步骤,主要由3种不同的菌群完成,即发酵菌、互营菌和产甲烷菌. 互营产甲烷过程释放的能量很低. 在互营产甲烷过程中存在互营菌的种内电子传递和互营菌与产甲烷菌的种间电子传递. 反向电子传递是互营菌种内电子传递的一种方式,表现为电子歧化和电子聚合,都需要消耗能量使得热力学上不利的氧化还原反应得以发生. 种间电子传递包括种间氢气转移、种间甲酸转移和种间直接电子传递3种方式. 未来人们可以利用基因敲除、高通量测序、计算生物学等方法研究互营微生物间底物和电子的传递,以及互营菌群对环境变化的响应机制,以便将互营产甲烷过程应用于实际生产. (图4 表1 参77)
Abstract:
Methane is the second most important greenhouse gas as well as a typical renewable biomass energy. Currently, about 74% of the methane in the atmosphere originates from the microbial syntrophic mehanogenesis process. Research on microbial syntrophic methanogenesis is therefore very important for controlling global warming and developing clean energy.This paper mainly reviews the types of methanogens, the process of syntrophic methanogenesis and its electron transfer. The typical anaerobic syntrophic oxidation of organic matters consists of three steps that are mainly conducted by fermenting bacteria, syntrophic bacteria, and methanogens. The energy released during syntrophic methanogenesis is extremely low. The syntrophic methanogenesis process contains intraspecies electron transfer in syntrophic bacteria and interspecies electron transfer between syntrophic bacteria and methanogens. Reverse electron transfer exists in intraspecies electron transfer in syntrophic bacteria and displays as electron bifurcation and electron confurcation which both require energy input to drive critical redox reactions. Interspecies electron transfer includes three types: interspecies hydrogen transfer (IHT), interspecies formate transfer (IFT) and direct interspecies electron transfer (DIET). In the future, in order to apply the process of syntrophic methanogenesis into practice, methods of gene knockout,high through-put sequencing and computational biology could be utilized for the study of substrate and electron transfer between syntrophic microbes and the response of syntrophic microbes to the environmental changes.

参考文献/References:

1 Morris BEL, Henneberger R, Huber H, Eichinger CM. Microbial syntrophy: interaction for the common good [J]. FEMS Microbiol Rev, 2013, 37: 384-406
2 Mcinerney MJ, Sieber JR, Gunsalus RP. Microbial syntrophy ecosystem level biochemical cooperation - genomic sequences reveal systems required to produce hydrogen and formate, plus other hallmarks of the syntrophic lifestyle [J]. Microbe, 2011, 6 (11): 479-485
3 Dworkin M, Falkow S, Rosenberg E, Schleifer KH, Stackebrandt E. The Prokaryotes [M]. 3rd ed. New York: Springer, 2006: 309-335
4 刘鹏飞, 陆雅海. 水稻土中脂肪酸互营氧化的研究进展[J]. 微生物学通报, 2013, 40 (1): 109-122 [Liu PF, Lu YH. A review of syntrophic fatty acids oxidation in anoxic paddy soil [J]. Microbiol China, 2013, 40 (1): 109-122]
5 李煜珊, 李耀明, 欧阳志云. 产甲烷微生物研究概况[J]. 环境科学, 2014, 35 (5): 2025-2030 [Li YS, Li YM, Ouyang ZY. A research overview of methanogens [J]. Environ Sci, 2014, 35 (5): 2025-2030]
6 许惠青. 大气甲烷研究现状及进展[J]. 内蒙古科技与经济, 2010, 11 (213): 41-42 [Xu HQ. Current status and development of atmospheric methane [J]. Inner Mongolia Sci Tech Econ,2010, 11 (213): 41-42]
7 Stams AJM, Plugge CM. Electron transfer in syntrophic communities of anaerobic bacteria and archaea [J]. Nat Rev Microbiol, 2009, 7 (8): 568-577
8 Kato S, Watanabe K. Ecological and evolutionary interactions in syntrophic methanogenic consortia [J]. Microbes Environ, 2010, 25 (3): 145-151
9 方晓瑜, 李家宝, 瑞俊鹏, 李香真. 产甲烷菌生化代谢途径研究进展[J]. 应用与环境生物学报, 2015, 21 (1): 1-9 [Fang XY, Li JB, Rui JP, Li XZ. Research progress in biochemical pathways of methanogenesis [J]. Chin J Appl Environ Biol, 2015, 21 (1): 1-9]
10 张秀君. 大气甲烷源和汇的研究[J]. 沈阳教育学院学报, 2004, 6 (1): 132-134 [Zhang XJ. The major sources and sinks for atmospheric methane [J]. J Shenyang Coll Edud, 2004, 6 (1): 132-134]
11 张定媛, 廖宏. 大气甲烷的源和汇及其浓度的观测模拟研究进展[J]. 气象科技进展, 2015, 5 (1): 40-47 [Zhang DY, Liao H. Advances in the research on sources and sinks of ch4 and observations and simulations of CH4 concentrations [J]. Adv Met Sci Technol, 2015, 5 (1): 40-47]
12 张杰, 陆雅海. 互营氧化产甲烷微生物种间电子传递研究进展[J]. 微生物学通报, 2015, 42 (5): 920-927 [Zhang J, Lu YH. A review of interspecies electron transfer in syntrophic-methanogenic associations [J]. Microbiol China, 2015, 42 (5): 920-927]
13 Schink B. Energetics of syntrophic cooperation in methanogenic degradation [J]. Microbiol Mol Biol R, 1997, 61 (2): 262-280
14 Mcinerney MJ, Sieber JR, Gunsalus RP. Syntrophy in anaerobic global carbon cycles [J]. Curr Opin Biotechnol, 2009, 20: 623-632
15 Kouzuma A, Kato S, Watanabe K. Microbial interspecies interactions: recent findings in syntrophic consortia [J]. Front Microbiol, 2015, 6: 1-8
16 Sofer SS. Biomass Conversion Processes for Energy and Fuels [M]. New York: Plenum Press, 1981: 277-296
17 Gieg LM, Fowler SJ, Berdugo-Clavijo C. Syntrophic biodegradation of hydrocarbon contaminants [J]. Curr Opin Biotechnol, 2014, 27: 21-29
18 Muller N, Worm P, Schink B, Stams AJ, Plugge CM. Syntrophic butyrate and propionate oxidation processes: from genomes to reaction mechanisms [J]. Environ Microbiol Rep, 2010, 2 (4): 489-499
19 李美群, 邓洁红, 熊兴耀, 谭兴和, 周红丽, 李清明, 苏小军, 张喻, 唐艳红, 彭丹, 张艳艳. 产甲烷菌的研究进展[J]. 酿酒科技, 2009, 5: 90-93 [Li MQ, Deng JH, Xiong XY, Tan XH, Zhou HL, Li QM, Su XJ, Zhang Y, Tang YH, Peng D, Zhang YY. Research progress in psychrophilic methanogenic bacteria [J]. Liquor-making Sci Technol, 2009, 5: 90-93]
20 傅霖, 辛明秀. 产甲烷菌的生态多样性及工业应用[J]. 应用与环境生物学报, 2009, 15 (2): 574-578 [Fu L, Xin MX. Ecological diversity and industrial application of methanogens [J]. Chin J Appl Environ Biol,2009, 15 (2): 574-578]
21 Debok FA, Luijten MLGC, Stams AJM. Biochemical evidence for formate transfer in syntrophic propionate-oxidizing cocultures of Syntrophobacter fumaroxidans and Methanospirillum hungatei [J]. Appl Environ Microbiol, 2002, 68 (9): 4247-4252
22 Stams AJ, De Bok FA, Plugge CM, Van Eekert MH, Dolfing J, Schraa G. Exocellular electron transfer in anaerobic microbial communities [J]. Environ Microbiol, 2006, 8 (3): 371-382
23 Stams AJM. Metabolic interaction between anaerobic bacteria in methanogenic enviroments [J]. Antonie van Leeuwenhoek, 1994, 66: 271-294
24 Morgavi DP, Forano E, Martin C, Newbold CJ. Microbial ecosystem and methanogenesis in ruminants [J]. Animal, 2010, 4 (7): 1024-1036
25 王保玉, 刘建民, 韩作颖, 刘健, 胡斌. 产甲烷菌的分类及研究进展[J]. 基因组学与应用生物学, 2014, 33 (2): 418-425 [Wang BY, Liu JM, Han ZY, Liu J, Hu B. Recent progress and classification of methanogens [J]. Genom App Biol, 2014, 33 (2): 418-425]
26 Borrel G, Parisot N, Harris HMB, Peyretaillade E, Gaci N, Tottey W, baradot O, Raymann K, Gribaldo S, Peyret P, O’toole PW, Brugere JF. Comparative genomics highlights the unique biology of Methanomassiliicoccales, a Thermoplasmatales-related seventh order of methanogenic archaea that encodes pyrrolysine [J]. BMC Genomics, 2014, 15 (679): 1-23
27 Sakai S, Imachi H, Hanada S, Ohashi A, Harada H, Kamagata Y. Methanocella paludicola gen. nov., sp. nov., a methane-producing archaeon, the first isolate of the lineage ‘Rice Cluster I’, and proposal of the new archaeal order Methanocellales ord. nov [J]. Int J Syst Evol Microbiol, 2008, 58 (4): 929-936
28 Paul K, Nonoh JO, Mikulski L, Brune A. “Methanoplasmatales”, Thermoplasmatales-related archaea in termite guts and other environments, are the seventh order of methanogens [J]. Appl Environ Microbiol, 2012, 78 (23): 8245-8253
29 张瑞, 雍晓雨, 周俊, 吴美容, 王舒雅, 闫志英, 陈怡露, 郑涛. 分子生物学技术在产甲烷古菌多样性研究中的应用[J]. 江苏农业科学, 2015, 43 (1): 16-20 [Zhang R, Yong XY, Zhou J, Wu MR, Wang SY, Yan ZY, Chegn YL, Zheng T. Application of molecular biological technology in the study of the diversity of methanogens [J]. Jiangsu Agric Sci, 2015, 43 (1): 16-20]
30 朱晨光, 许政暟, 宋任涛. 产甲烷古菌[J]. 生命的化学, 2009, 29 (1): 129-133 [Zhu CG, Xu ZK, Song RT. Progress in research of methanogens [J]. Chem Life, 2009, 29 (1): 129-133]
31 Lykidis A, Chen CL, Tringe SG, Mchardy AC, Copeland A, Kyrpides NC, Hugenholtz P, Macarie H, Olmos A, Monroy O, Liu WT. Multiple syntrophic interactions in a terephthalate-degrading methanogenic consortium [J]. ISME J, 2011, 5 (1): 122-130
32 Elferink SJWHO, Vorstman WJC, Sopjes A, Stams AJM. Characterization of the sulfate-reducing and syntrophic population in granular sludge from a full-scale anaerobic reactor treating papermill wastewater [J]. FEMS Microbio Ecol, 1998, 27: 185-194
33 Valentine DL, Reeburgh WS. New perspectives on anaerobic methane oxidation [J]. Environ Microbiol, 2000, 2 (5): 477-484
34 麻婷婷, 承磊, 刘来雁, 代莉蓉, 周正, 张辉. 不同抑制剂对乙酸降解产甲烷及产甲烷菌群结构的影响[J]. 微生物学报, 2015, 55 (5): 587-597 [Ma TT, Cheng L, Liu LY, Dai LR, Zhou Z, Zhang H. Effects of selective methanogenic inhibitors on methanogenesis and methanogenic communities in acetate degrading cultures [J]. Acta Microbiol Sin, 2015, 55 (5): 587-597]
35 Gray ND, Sherry A, Grant RJ, Rowan AK, Hubert CR, Callbeck CM, Aitken CM, Jones DM, Adams JJ, Larter SR, Head IM. The quantitative significance of Syntrophaceae and syntrophic partnerships in methanogenic degradation of crude oil alkanes [J]. Environ Microbiol, 2011, 13 (11): 2957-2975
36 Mcinerney MJ, Bryant MP, Pfennig N. Anaerobic bacterium that degrades fatty acids in syntrophic association with methanogens [J]. Arch Microbiol, 1979, 122: 129-135
37 Conrad R. Contribution of hydrogen to methane production and control of hydrogen concentrations in methanogenic soils and sediments [J]. FEMS Microbiol Ecol, 1999, 28: 193-202
38 Sieber JR, Mcinerney MJ, Gunsalus RP. Genomic insights into syntrophy: the paradigm for anaerobic metabolic cooperation [J]. Annu Rev Microbiol, 2012, 66: 429-452
39 Kotsyurbenko OR, Glagolev MV, Nozhevnikova AN, Conrad R. Competition between homoacetogenic bacteria and methanogenic archaea for hydrogen at low temperature [J]. FEMS Microbiol Ecol, 2001, 38: 153-159
40 Kemp MB, Quayle JR. Microbial Growth on C1 Compounds [J]. Biochem J, 1996, 102: 94-102
41 Bleicher K, Winter J. Fomate production and utilization by methanogens and by sewage sluge consordia-interference with the concept of interspecies formate transfer [J]. Appl Microbiol Biotechnol, 1994, 40: 910-915
42 Wu WM, Hickey RF, Jain MK, Zeikus JG. Energetics and regulations of formate and hydrogen metabolism by Methnobacterium formicicum [J]. Arch Microbiol, 1993, 159: 57-65
43 Dolfing J, Jiang B, Henstra AM, Stams AJ, Plugge CM. Syntrophic growth on formate: a new microbial niche in anoxic environments [J]. Appl Environ Microbiol, 2008, 74 (19): 6126-6131
44 Boone DR, Johnson RL, Liu Y. Diffusion of the interspecies electron carriers H2 and formate in methanogenic ecosystems and its implications in the measurement of Km for H2 or formate uptake [J]. Appl Environ Microbiol, 1989, 55 (7): 1735-1741
45 Schonheit P, Kristjansson JK, Thauer RK. Kinetic mechanism for the ability of sulfate reducers to out-compete methanogens for acetate [J]. Arch Microbiol, 1982, 132: 285-288
46 Dong X, Stams AJM. Evidence for H2 and formate formation during syntrophic butyrate and propionate degradation [J]. Anaerobe, 1995, 1: 35-39
47 Lee MJ, Zinder SH. Hydrogen partial pressures in a thermophilic acetate-oxidizing methanogenic coculture [J]. Appl Environ Microbiol, 1988, 54 (6): 1457-1461
48 Valentine DL, Reeburgh WS, Blanton DC. A culture apparatus for maintaining H2 at sub-nanomolar concentrations [J]. J Microbiol Meth, 2000, 39: 243-251
49 De Bok FA, Plugge CM, Stams AJ. Interspecies electron transfer in methanogenic propionate degrading consortia [J]. Water Res, 2004, 38 (6): 1368-1375
50 Hoehler TM, Alperin MJ, Albert DB, Martens CS. Thermodynamic control on hydrogen concentrations in anoxic sediments [J]. Geochim Cosmochim Acta, 1998, 62 (10): 1745-1756
51 Valentine DL, Blanton DC, Reeburgh WS. Hydrogen production by methanogens under low-hydrogen conditions [J]. Arch Microbiol, 2000, 174 (6): 415-421
52 Harmsen HJM, Kengen HMP, Akkermans ADL, Stams AJM. Phylogenetic analysis of two syntrophic propionate-oxidizing bacteria in enrichments cultures [J]. Syst Appl Microbiol, 1995, 18: 67-73
53 Weiner, A, Schopf S, Gerhard W, Alexander P, Wirth. Positive, neutral and negative interactions in cocultures between Pyrococcus furiosus and different methanogenic archaea [J]. Microbiol Insights, 2012, 5: 1-10 54 Schocke L, Schink B. Energetics of methanogenic benzoate degradation by Syntrophus gentianae in syntrophic coculture [J]. Microbiology, 1997, 143: 2245-2251
55 Warikoo V, Mcinerney MJ, Robinson JA, Suflita JM. Interspecies acetate transfer influences the extent of anaerobic benzoate degradation by syntrophic consortia [J]. Appl Environ Microbiol, 1996, 62 (1): 26-32
56 Sieber JR, Sims DR, Han C, Kim E, Lykidis A, Lapidus AL, Mcdonnald E, Rohlin L, Culley DE, Gunsalus R, Mcinerney MJ. The genome of Syntrophomonas wolfei: new insights into syntrophic metabolism and biohydrogen production [J]. Environ Microbiol, 2010, 12 (8): 2289-2301
57 Schink CWB. Evidence of reversed electron transport in syntrophic butytate or benzoate oxidation by Sytrophomonas wofei and Syntrophus buswellii [J]. Arch Microbiol, 1994, 162: 136-142
58 Dong X, Stams AJM. Localization of the enzymes involved in H2 and formate metabolism in Syntrophospora bryantii [J]. Antonie van Leeuwenhoek, 1995, 67: 345-350
59 Buckel W, Thauer RK. Energy conservation via electron bifurcating ferredoxin reduction and proton/Na (+) translocating ferredoxin oxidation [J]. Biochim Biophys Acta, 2013, 1827 (2): 94-113
60 Morita M, Malvankar NS, Franks AE, Summers ZM, Giloteaux L, Rotaru AE, Rotaru C, Lovleya DR. Potential for direct interspecies electron transfer in methanogenic wastewater digester aggregates [J]. mBio, 2011, 2 (4): 1-8
61 Bok FaMD, Hagedoorn P-L, Silva PJ, Hagen WR, Schiltz E, Fritsche K, Stams AJM. Two W-containing formate dehydrogenases (CO2-reductases) involved in syntrophic propionate oxidation by Syntrophobacter fumaroxidans [J]. Eur J Biochem, 2003, 270: 2476-2485
62 Rotaru AE, Shrestha PM, Liu F, Ueki T, Nevin K, Summers ZM, Lovley DR. Interspecies electron transfer via hydrogen and formate rather than direct electrical connections in cocultures of Pelobacter carbinolicus and Geobacter sulfurreducens [J]. Appl Environ Microbiol, 2012, 78 (21): 7645-7651
63 Hattori S, Luo H, Shoun H, Kamagata Y. Involvement of formate as an interspecies electron carrier in a sytrophic acetate-oxidizing anaerobic microorgnism in coculture with methanogens [J]. J Biosci Bioeng, 2001, 91 (3): 294-298
64 马晨, 周顺桂, 庄莉, 武春媛. 微生物胞外呼吸电子传递机制研究进展[J].生态学报, 2011, 31 (7): 2008-2018 [Ma C, Zhou SG, Zhuang L, Wu CY. Electron transfer mechanism of extracellular respiration: a review [J]. Acta Ecol Sin, 2011, 31 (7): 2008-2018]
65 Summers ZM, Fogarty HE, Leang C, Franks AE, Malvankar NS, Lovley DR. Direct exchange of electrons within aggregates of an evolved syntrophic coculture of anaerobic bacteria [J]. Science, 2010, 330 (3): 1413-1415
66 Reguera G, Mccarthy KD, Mehta T, Nicoll JS, Tuominen MT, Lovley DR. Extracellular electron transfer via microbial nanowires [J]. Nature, 2005, 435 (7045): 1098-1101
67 Kato S, Hashimoto K, Watanabe K. Microbial interspecies electron transfer via electric currents through conductive minerals [J]. PNAS, 2012, 109 (25): 10042-10046
68 Harris HW, El-Naggar MY, Bretschger O, Ward MJ, Romine MF, Obraztsova AY, Nealson KH. Electrokinesis is a microbial behavior that requires extracellular electron transport [J]. PNAS, 2010, 107 (1): 326-331
69 Rabaey K, Boon N, Hofte M, Verstraete W. Microbial Phenazine Production enhances electron transfer in biofuel cells [J]. Environ Sci Technol, 2005, 39 (9): 3401-3408
70 Marsili E, baraon DB, Shikhare ID, Coursolle D, Gralnick JA, Bond DR. Shewanella secretes flavins that mediate extracellular electron transfer [J]. PNAS, 2008, 105 (10): 3968-3973
71 Smith JA, Nevin KP, Lovley DR. Syntrophic growth via quinone-mediated interspecies electron transfer [J]. Front Microbiol, 2015, 6: 1-8
72 Rotaru AE, Shrestha PM, Liu F, Markovaite B, Chen S, Nevin KP, Lovley DR. Direct interspecies electron transfer between Geobacter metallireducens and Methanosarcina barkeri [J]. Appl Environ Microbiol, 2014, 80 (15): 4599-4605
73 Liu F, Rotaru A-E, Shrestha PM, Malvankar NS, Nevin KP, Lovley DR. Promoting direct interspecies electron transfer with activated carbon [J]. Energ Environ Sci, 2012, 5 (10): 8982
74 Li H, Chang J, Liu P, Fu L, Ding D, Lu Y. Direct interspecies electron transfer accelerates syntrophic oxidation of butyrate in paddy soil enrichments [J]. Environ Microbiol, 2015, 17 (5): 1533-1547
75 Shimoyama T, Kato S, Ishii S, Watanabe K. Flagellum mediates symbiosis [J]. Science, 2009, 323: 1574
76 Ishii S, Kosaka T, Hori K, Hotta Y, Watanabe K. Coaggregation facilitates interspecies hydrogen transfer between Pelotomaculum thermopropionicum and Methanothermobacter thermautotrophicus [J]. Appl Environ Microbiol, 2005, 71 (12): 7838-7845
77 Ishii S, Kosaka T, Hotta Y, Watanabe K. Simulating the contribution of coaggregation to interspecies hydrogen fluxes in syntrophic methanogenic consortia [J]. Appl Environ Microbiol, 2006, 72 (7): 5093-5096

相似文献/References:

[1]傅霖,辛明秀.产甲烷菌的生态多样性及工业应用[J].应用与环境生物学报,2009,15(04):574.[doi:10.3724/SP.J.1145.2009.00574]
 FU Lin,XIN Mingxiu.Ecological Diversity and Industrial Application of Methanogens[J].Chinese Journal of Applied & Environmental Biology,2009,15(01):574.[doi:10.3724/SP.J.1145.2009.00574]
[2]胡亚东,袁月祥,闫志英,等.一株生长pH较宽的产甲烷菌分离与系统发育分析[J].应用与环境生物学报,2009,15(04):554.[doi:10.3724/SP.J.1145.2009.00554]
 HU Yadong,YUAN Yuexiang,YAN Zhiying,et al.Identification and Phylogenetic Analysis of a strain Methanogen with Wide Range of Growing pH[J].Chinese Journal of Applied & Environmental Biology,2009,15(01):554.[doi:10.3724/SP.J.1145.2009.00554]
[3]袁敏,张辉,胡国全.一株兼性嗜冷小甲烷粒菌的生物学特性及系统发育分析[J].应用与环境生物学报,2010,16(05):705.[doi:10.3724/SP.J.1145.2010.00705]
 YUAN Min,ZHANG Hui,HU Guoquan.Biological Characteristics and Phylogenetic Analysis of a Strain of Methanocorpusculum parvum[J].Chinese Journal of Applied & Environmental Biology,2010,16(01):705.[doi:10.3724/SP.J.1145.2010.00705]
[4]王俪鲆,张良,刘来雁,等.泸州古酿酒窖池中两株产甲烷杆菌比较研究[J].应用与环境生物学报,2010,16(06):840.[doi:10.3724/SP.J.1145.2010.00840]
 WANG Liping,ZHANG Liang,LIU Laiyan,et al.Comparative Study of Two Methanobacterium Strains in the Ancient Fermentation Pits of Luzhou[J].Chinese Journal of Applied & Environmental Biology,2010,16(01):840.[doi:10.3724/SP.J.1145.2010.00840]
[5]王芳,刘晓飞,刘晓风,等.产氢菌对沼气发酵的生物强化作用[J].应用与环境生物学报,2013,19(02):351.[doi:10.3724/SP.J.1145.2013.00351]
 WANG Fang,LIU Xiaofei,LIU Xiaofeng,et al.Biotechnological Intensification of Biogas Fermentation by Hydrogen Producing Bacteria[J].Chinese Journal of Applied & Environmental Biology,2013,19(01):351.[doi:10.3724/SP.J.1145.2013.00351]
[6]王珊珊,韩娅新,何环,等.煤层水中一株产甲烷菌的分离与系统发育分析[J].应用与环境生物学报,2014,20(01):123.[doi:10.3724/SP.J.1145.2014.00123]
 WANG Shanshan,HAN Yaxin,HE Huan,et al.Isolation and phylogenic analysis of a methanogen from coal bed water[J].Chinese Journal of Applied & Environmental Biology,2014,20(01):123.[doi:10.3724/SP.J.1145.2014.00123]
[7]叶飞,吴胜军,黄培,等.微氧折流反应器启动过程产甲烷菌群落结构变化特征[J].应用与环境生物学报,2014,20(03):407.[doi:10.3724/SP.J.1145.2014.08026]
 YE Fei,WU Shengjun,HUANG Pei,et al.Structure characteristics of methanogenic community produced during the startup of microaerobic baffled reactor[J].Chinese Journal of Applied & Environmental Biology,2014,20(01):407.[doi:10.3724/SP.J.1145.2014.08026]
[8]方晓瑜,李家宝,芮俊鹏,等.产甲烷生化代谢途径研究进展[J].应用与环境生物学报,2015,21(01):1.[doi:10.3724/SP.J.1145.2014.08019]
 FANG Xiaoyu,LI Jiabao,RUI Junpeng,et al.Research progress in biochemical pathways of methanogenesis[J].Chinese Journal of Applied & Environmental Biology,2015,21(01):1.[doi:10.3724/SP.J.1145.2014.08019]
[9]王艳发,魏士平,崔鸿鹏,等.祁连山冻土区土壤活动层与冻土层中甲烷代谢微生物群落结构特征[J].应用与环境生物学报,2016,22(22卷04):592.[doi:10.3724/SP.J.1145.2016.01051]
 WANG Yanfa,WEI Shiping**,et al.Methane metabolic microbial community structure in the active layer and the permafrost layer of the Qilian permafrost, China*[J].Chinese Journal of Applied & Environmental Biology,2016,22(01):592.[doi:10.3724/SP.J.1145.2016.01051]
[10]陈颖,邱凯瑞,吴麒,等.桂林会仙岩溶湿地产甲烷菌的数量、群落组成和活性[J].应用与环境生物学报,2017,23(06):959.[doi:10.3724/SP.J.1145.2016.11043]
 CHEN Ying,**,QIU Kairui,et al.Methanogenic community structure, abundance, and activity in Huixian karst wetland, Guilin, China[J].Chinese Journal of Applied & Environmental Biology,2017,23(01):959.[doi:10.3724/SP.J.1145.2016.11043]

更新日期/Last Update: 2016-02-25