|本期目录/Table of Contents|

[1]程诚,赵心清,白凤武.细胞絮凝及硫酸锌对酿酒酵母乙酸胁迫耐性的影响[J].应用与环境生物学报,2016,22(01):116-119.[doi:10.3724/SP.J.1145.2015.07022]
 CHENG Cheng,ZHAO Xinqing** & BAI Fengwu,Effects of cell flocculation and zinc sulfate addition on acetic acid stress tolerance of Saccharomyces cerevisiae[J].Chinese Journal of Applied & Environmental Biology,2016,22(01):116-119.[doi:10.3724/SP.J.1145.2015.07022]
点击复制

细胞絮凝及硫酸锌对酿酒酵母乙酸胁迫耐性的影响()
分享到:

《应用与环境生物学报》[ISSN:1006-687X/CN:51-1482/Q]

卷:
22卷
期数:
2016年01期
页码:
116-119
栏目:
研究论文
出版日期:
2016-02-25

文章信息/Info

Title:
Effects of cell flocculation and zinc sulfate addition on acetic acid stress tolerance of Saccharomyces cerevisiae
作者:
程诚 赵心清 白凤武
1大连理工大学生命科学与技术学院 大连 116024
2上海交通大学生命科学技术学院 上海 200240
Author(s):
CHENG Cheng1 ZHAO Xinqing2** & BAI Fengwu1 2
1School of Life Science and Biotechnology, Dalian University of Technology, Dalian 116024, China 2School of Life Science and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
关键词:
自絮凝酵母SPSC01絮凝基因FLO1乙酸耐受性锌添加乙醇发酵
Keywords:
self-flocculating yeast SPSC01 FLO1 acetic acid tolerance zinc supplementation ethanol production
分类号:
TK63 : TQ920.1
DOI:
10.3724/SP.J.1145.2015.07022
摘要:
酿酒酵母细胞絮凝和外源添加锌离子对其环境胁迫耐受性都具有促进作用,为了解细胞絮凝形态对锌促进乙醇发酵的影响,比较硫酸锌添加对絮凝酿酒酵母SPSC01及其絮凝基因失活突变体SPSC01 FLO1Δ在乙酸胁迫条件下乙醇发酵的影响. 结果显示,与野生型絮凝酵母相比,添加锌可更明显改善SPSC01 FLO1Δ在乙酸中的生长和发酵,在10 g L-1乙酸存在的情况下,SPSC01在70 h消耗100 g L-1葡萄糖,锌离子添加后可使发酵终点提前10 h,而SPSC01 FLO1Δ在锌离子添加后发酵时间为48 h,可将发酵时间显著缩短138 h. 这些结果表明,锌在酿酒酵母细胞缺少絮凝保护的条件下更能有效发挥作用,同时甘油、琥珀酸的增加在絮凝基因敲除突变体中更加明显. 本文研究结果可为进一步利用絮凝及锌响应调控基因提高酿酒酵母的环境胁迫耐受性,提高燃料乙醇的生产效率奠定基础. (图2 参18)
Abstract:
Both flocculation and zinc supplementation are beneficial for protecting Saccharomyces cerevisiae against stressful conditions, however, the effect of cell flocculation on the enhancement of ethanol production by zinc addition is still unclear. This study compared the ethanol production ability of the flocculating yeast strain SPSC01 and its FLO1△ mutant in the presence of acetic acid with the supplementation of zinc sulfate. It was found that zinc sulfate supplementation exerted more significant effect on the improvement of cell growth and ethanol fermentation abilities of the FLO1 disruption mutant compared to SPSC01. Under the stress of 10 g L-1 acetic acid, the fermentation time for SPSC01 was 70 h without zinc addition, but shortened by 10 h with zinc supplementation; the FLO1△ mutant could consume all the glucose in 48 h with zinc sulfate supplementation, 138 h in advance than that without zinc sulfate addition. The results indicated that the protection ability of zinc to yeast cells was more obvious in yeast cells lacking flocculation protection, suggesting different mechanisms underlying improved stress tolerance by cell flocculation and zinc addition. These results provide basis for further improvement of stress tolerance of yeast cells against unfavorable environmental conditions, and benefits strain development using cell flocculation and zinc-responsive genes for efficient cellulosic ethanol production.

参考文献/References:

1 Hahn-H?gerdal B, Galbe M, Gorwa-Grauslund MF, Lidén G, Zacchi G. Bio-ethanol–the fuel of tomorrow from the residues of today [J]. Trends Biotechnol, 2006, 24 (12): 549-556
2 Sluiter JB, Ruiz RO, Scarlata CJ, Sluiter AD, Templeton DW. Compositional analysis of lignocellulosic feedstocks. 1. Review and description of methods [J]. J Agric Food Chem, 2010, 58 (16): 9043-9053
3 Palmqvist E, Hahn-H?gerdal B. Fermentation of lignocellulosic hydrolysates. II: inhibitors and mechanisms of inhibition [J]. Bioresour Technol, 2000, 74 (1): 25-33
4 Wei N, Quarterman J, Kim SR, Cate JH, Jin YS. Enhanced biofuel production through coupled acetic acid and xylose consumption by engineered yeast [J]. Nat Commun, 2013, 4: 10.1038/ncomms3580
5 Giannattasio S, Guaragnella N, ?dralevi? M, Marra E. Molecular mechanisms of Saccharomyces cerevisiae stress adaptation and programmed cell death in response to acetic acid [J]. Front Microbiol, 2013, 4 (33): 1-7
6 Stratford M, Nebe-von-Caron G, Steels H, Novodvorska M, Ueckert J, Archer DB. Weak-acid preservatives: pH and proton movements in the yeast Saccharomyces cerevisiae [J]. Int J?Food?Microbiol, 2013, 161 (3): 164-171
7 Casey E, Sedlak M, Ho NW, Mosier NS. Effect of acetic acid and pH on the cofermentation of glucose and xylose to ethanol by a genetically engineered strain of Saccharomyces cerevisiae [J]. FEMS Yeast Res, 2010, 10 (4): 385-393
8 Westman JO, Mapelli V, Taherzadeh MJ, Franzén CJ. Flocculation causes inhibitor tolerance in Saccharomyces cerevisiae for 2nd generation bioethanol production [J]. Appl Environ Microbiol, 2014, 80 (22): 6908-6918
9 杜昭励, 程艳飞, 朱卉, 何秀萍, 张博润. 絮凝基因FLO1及FLO1c 高表达提高工业酿酒酵母乙酸耐受性及发酵性能[J]. 生物工程学报, 2015, 31 (2): 231-241 [Du ZL, Cheng YF, Zhu L, He XP, Zhang BR. Improvement of acetic acid tolerance and fermentation performance of industrial Saccharomyces cerevisiae by overexpression of flocculent gene FLO1 and FLO1c [J]. Chin J Biotech, 2015, 31 (2): 231-241]
10 Ismail KSK, Sakamoto T, Hasunuma T, Zhao XQ, Kondo A. Zinc, magnesium, and calcium ion supplementation confers tolerance to acetic acid stress in industrial Saccharomyces cerevisiae utilizing xylose. Biotechnol J, 2014, 9 (12): 1519-1525
11 薛闯, 赵心清, 葛旭萌, 袁文杰, 白凤武. 锌离子对自絮凝酵母乙醇耐受性和絮凝颗粒大小的影响[J]. 化工学报, 2008, 59 (10): 2582-2588 [Xue C, Zhao XQ, Ge XM, Yuan WJ, Bai FW. Effect of zinc ion on ethanol tolerance and floc size of self-flocculating yeast. CIESC J, 2008, 59 (10): 2582-2588]
12 徐桂红, 赵心清, 李宁, 白凤武. 锌离子提高絮凝酵母乙酸胁迫耐受性[J]. 化工学报, 2012, 63 (6): 1823-1829 [Xu GH, Zhao XQ, Li N, Bai FW. Improvement of acetic acid tolerance of self-flocculating yeast by zinc supplementation [J]. CIESC J, 2012, 63 (6): 1823-1829]
13 He LY, Zhao XQ, Bai FW. Engineering industrial Saccharomyces cerevisiae strain with the FLO1-derivative gene isolated from the flocculating yeast SPSC01 for constitutive flocculation and fuel ethanol production [J]. Appl Energy, 2012, 100: 33-40
14 Paget CM, Schwartz JM, Delneri D. Environmental systems biology of cold-tolerant phenotype in Saccharomyces species adapted to grow at different temperatures [J]. Mol Ecol, 2014, 23 (21): 5241-5257
15 Vriesekoop F, Haass C, Pamment NB. The role of acetaldehyde and glycerol in the adaptation to ethanol stress of Saccharomyces cerevisiae and other yeasts [J]. FEMS Yeast Res, 2009, 9 (3): 365-371
16 Cao J, Barbosa JM, Singh NK, Singh, NK, Locy RD. GABA shunt mediates thermo tolerance in Saccharomyces cerevisiae by reducing reactive oxygen production [J]. Yeast, 2013, 30 (4): 129-144
17 Wan C, Zhang MM, Fang Q, Xiong L, Zhao XQ, Hasunuma T, Bai FW, Kondo A. The impact of zinc sulfate addition on the dynamic metabolic profiling of Saccharomyces cerevisiae subjected to long term acetic acid stress treatment and identification of key metabolites involved in the antioxidant effect of zinc [J]. Metallomics, 2015, 7 (2): 322-332
18 Xue C, Zhao XQ, Bai FW. Effect of the size of yeast flocs and zinc supplementation on continuous ethanol fermentation performance and metabolic flux distribution under very-high-concentration conditions [J]. Biotechnol Bioeng, 2010, 105: 935-944

更新日期/Last Update: 2016-02-25