|本期目录/Table of Contents|

[1]高尚,莫洪君,石浩然,等.利用SNP基因芯片技术进行小麦遗传图谱构建及重要农艺性状QTL分析[J].应用与环境生物学报,2016,22(01):85-94.[doi:10.3724/SP.J.1145.2015.07018]
 GAO Shang,MO Hongjun,SHI Haoran,et al.Construction of wheat genetic map and QTL analysis of main agronomic traits using SNP genotyping chips technology[J].Chinese Journal of Applied & Environmental Biology,2016,22(01):85-94.[doi:10.3724/SP.J.1145.2015.07018]
点击复制

利用SNP基因芯片技术进行小麦遗传图谱构建及重要农艺性状QTL分析()
分享到:

《应用与环境生物学报》[ISSN:1006-687X/CN:51-1482/Q]

卷:
22卷
期数:
2016年01期
页码:
85-94
栏目:
研究论文
出版日期:
2016-02-25

文章信息/Info

Title:
Construction of wheat genetic map and QTL analysis of main agronomic traits using SNP genotyping chips technology
作者:
高尚 莫洪君 石浩然 王智强 林宇 武方琨 邓梅 刘亚西 魏育明 郑有良
四川农业大学小麦研究所 成都 611130
Author(s):
GAO Shang MO Hongjun SHI Haoran WANG Zhiqiang LIN Yu WU Fangkun DENG Mei LIU Yaxi WEI Yuming & ZHENG Youliang**
Triticeae Research Institute, Sichuan Agriculture University, Chengdu 611130, China
关键词:
普通小麦90K基因芯片QTL定位农艺性状SNP
Keywords:
common wheat 90k array QTL mapping agronomic traits SNP
分类号:
S330.2+5
DOI:
10.3724/SP.J.1145.2015.07018
摘要:
小麦遗传图谱是进行小麦染色体分析和表型研究的遗传基础. 构建高密度遗传图谱,针对小麦重要农艺性状进行初级定位,确定相关性状主效数量性状位点(Quantitative Trait Loci,QTL),有助于开发辅助选择的实用性标记,并为利用次级群体进行精细定位和基因挖掘奠定基础. 本研究以H461 × CN16的重组自交系(Recombinant Inbred Line,RIL)为作图群体,利用90k小麦SNP基因芯片技术,对包含188个家系的RIL群体(F7)进行多态性分析,构建高密度遗传图谱,并利用MapQTL5.0的多QTL模型(MQM),对旗叶长、穗粒数等8个重要农艺性状进行QTL 定位分析. 构建了包括43个连锁群的分子遗传图谱,成功连锁到除2D、5D、6D外的18条染色体. 该图谱共含有6 573个多态性SNP标记,覆盖的遗传距离长2 647.02 cM,标记间平均距离仅为0.4 cM. A、B、D三个染色体组分别含有标记2 696、3 094和684个;覆盖染色长度分别为1 130.92 cM、1 164.82 cM和330.44 cM;分别建立19、18和5个连锁群. 对8种重要田间农艺性状进行QTL分析,共检测到66个重要农艺性状QTL,其中包括26个主效QTL,包含未见报道的新位点7个. 全部QTL分布于2A、4A、6A、2B、4B、5B、2D、4D、7D 9条染色体上,单个QTL可解释表型变异率7.4%-19.5%,其中62个QTL加性效应来自母本H461,其余来自父本CN16. 以上结果为小麦重要农艺性状QTL精细定位打下了基础,也为分子标记辅助育种提供了参考. (图1 表4 参55)
Abstract:
Wheat genetic map is a basic method for genome analysis and understanding of the genetic basis of phenotypic variation. This study aimed to construct high density genetic maps in order to perform QTL analysis for agronomic and quality traits of wheat to provide reference for molecular marker assisted selection breeding, fine mapping and excavation of relevant genes. An RIL (recombinant inbred lines) population including 188 lines from H461 CN16 was analyzed using wheat 90k SNP genotyping chips technology. Subsequently, a high density genetic map was constructed. QTL for agronomic and quality traits were analyzed using MapQTL5.0 by multi-QTL model (MQM). The traits studied contained 9 agronomic traits including effective tillers, flag leaf length and kernel number. Aa a result, a genetic map of wheat consisting of 43 linkage groups was constructed with 6 573 polymorphism SNP markers, located in 18 chromosomes of the wheat genome except for 2D, 5D, 6D, covering 2 647.02 cM with an average interval distance of 0.4 cM. Among them 2 696 SNP markers (41%) were from Genome A, covering 1 130.92 cM, with an average interval distance of 0.42 cM, establishing 19 linkage groups; 3 094 SNP markers (47.1%) were from Genome B, covering 1 164.82 cM, with an average interval distance of 0.38 cM, establishing 18 linkage groups; Genome D contained 684 SNP markers (10.4%), covering 330.44 cM, with an average interval distance 0.48 cM, establishing 5 linkage groups; Moreover, 99 SNP makers were located simultaneously in 2A/2B/2D chromosomes, constructing one linkage group. We detected a total of 8 agronomic traits associated with 66 QTLs, including 26 main-effective QTL, among which 7 (located in 2A, 4A, 6A, 2B, 4B, 5B, 2D, 4D, 7D) were detected for the first time. Single QTL explained phenotypic variance of 7.4%-19.5%, with 62 QTL additive effects from H461, and the rest from CN16. The results lay a foundation for further fine-mapping of relevant QTL, and provide help in molecular marker assisted selection breeding.

参考文献/References:

1 R?der MS, Korzun V, Wendehake K, Plaschke J, Tixier MH, Leroy P, Ganal MW. A microsatellite map of wheat [J]. Genetics, 1998, 149: 2007-2023
2 Stephenson P, Bryan G, Kirby J, Collins A, Devos K, Busso C, Gale M. Fifty new microsatellite loci for the wheat genetic map [J]. Theor Appl Genet, 1998, 97: 946-949
3 Devos KM, Gale MD. The use of random amplified polymorphic DNA markers in wheat [J]. Theor Appl Genet, 1992, 84: 567-572
4 Gupta PK, Roy JK, Prasad M. Single nucleotide polymorphisms: a new paradigm for molecular marker technology and DNA polymorphism detection with emphasis on their use in plants [J]. Curr Sci, 2001, 80: 524-535
5 Somers DJ, Isaac P, Edwards K. A high-density microsatellite consensus map for bread wheat (Triticum aestivum L.) [J]. Theor Appl Genet, 2004, 109: 1105-1114
6 Varshney RK, Marcel TC, Ramsay L, Russell J, R?der MS, Stein N, Waugh R, Langridge P, Niks RE, Graner A. A high density barley microsatellite consensus map with 775 SSR loci [J]. Theor Appl Genet, 2007, 114: 1091-1103
7 Brookes AJ. The essence of SNP [J]. Gene, 1999, 234: 177-186
8 Rafalski JA. Application of single nucleotide polymorphisms in crop genetics [J]. Curr Opin Plant Biol, 2002, 5: 94-100
9 Nasu S, Suzuki J, Ohta R, Hasegawa K, Yui R, Kitazawa N, Minobe Y. Search for and analysis of single nucleotide polymorphisms (SNP) in rice (Oryza sativa, Oryza rufipogon) and establishment of SNP markers [J]. DNA Res, 2002, 9: 163-171
10 Lander ES. The new genomics: global views of biology [J]. Science, 1996, 274: 536-539
11 Wang DG, Fan JB, Siao CJ, Berno A, Young P, Sapolsky R, Ghandour G, Perkins N, Winchester E, Spencer J, Kruglyak L, Stein L, Hsie L, Topaloglou T, Hubbell E, Robinson E, Mittmann M, Morris MS, Shen NP , Kilburn D, Rioux J, Nusbaum C, Rozen S, Hudson TJ, Lipshutz R, Chee M, Lander E S. Large scale identification, mapping and genotyping of single nucleotide polymorphism in the human genome [J]. Science, 1998, 280: 1077-1082
12 Sachidanandam R, Weissman D, Schmidt SC, Kakol JM, Marth LDS, Mullikin SSC, Mortimore B J, Willey DL, Hunt S E, Cole C G, Coggill PC, Rice CM, Ning Z, Rogers J, Kwok DRB, Mardis ER, Yeh RT, Schultz B, Cook L, Davenport R, Dante M, Fulton L, Hillier L, Waterston RH, Gilman JDM, Schaffner S, Van Etten WJ, Reich D, Higgins J, Daly MJ, Blumenstiel B, Bald WJ, Stange T N, Zody MC, Linton L, Lander ES, David AD. A map of human genome sequence variation containing 1.42 million single nucleotide polymorphism [J]. Nature, 2001, 409: 928-933
13 Hoskins RA, Phan A, Naeemuddin M, Mapa FA, Ruddy DA, Ryan JJ, Young LM, Wells T, Kopczynski C, Ellis C. Single nucleotide polymorphism markers for genetic mapping in Drosophila melanogaster [J]. Genome Res, 2001, 11: 1100-1113
14 Rafalski JA. Novel genetic mapping tools in plants: SNP and LD based approaches [J]. Plant Sci, 2002, 162: 329-333
15 Ching A, Caldwell KS, Jung M, Dolan M, Smith OS, Tingey S, Morgante M, Rafalki AJ. SNP frequency, haplotype structure and linkage disequilibrium in elite maize inbred lines [J]. BMC Genet 2002, 3: 19
16 Allen AM, Barker GL, Berry ST, Coghill JA, William RG. Transcript-specific, single-nucleotide polymorphism discovery and linkage analysis in hexaploid bread wheat (Triticum aestivum L.) [J]. Plant Biotechnol, 2011, 9: 1086-1099
17 Lai KC, Duran PJ, Berkman MT, Lorenc J. Single nucleotide polymorphism discovery from wheat next-generation sequence data [J]. Plant Biotechnol, 2012, 10: 743-749
18 Edwards KJ, Poole RL, Barker GLA. SNP discovery in plants [M]//Henry RJ ed. Plant Genotyping II: SNP Technology. Wallingford, Oxfordshire, 2008: 1-29
19 Akhunov E, Nicolet C, Dvorak J. Single nucleotide polymorphism genotyping in polyploid wheat with the Illumina GoldenGate assay. Theor Appl Genet , 2009, 119: 507-517
20 Chao S, Zhang W, Akhunov E, Sherman J, Ma Y, Luo MC, Dubcovsky J. Analysis of gene-derived SNP marker polymorphism in US wheat (Triticum aestivum L.) cultivars [J]. Mol Breeding, 2009, 23: 23-33
21 Chao SJ, Dubcovsky J, Dvorak, Luo MC, Baenziger SP, Matnyazov R, Clark DR, Talbert LE, Anderson JA, Dreisigacker S, Glover K, Chen JL, Campbell K, Bruckner PL, Rudd JC, Haley S, Carver BF, Perry S, Sorrells ME, Akhunov ED. Population-and genome-specific patterns of linkage disequilibrium and SNP variation in spring and winter wheat (Triticum aestivum L.) [J]. BMC Genomics, 2010, 11: 727
22 Trebbi DM, Maccaferri P, de Heer A. Sorensen S. Giuliani. High-throughput SNP discovery and genotyping in durum wheat (Triticum durum Desf.) [J]. Theor Appl Genet, 2011, 123: 555-569
23 Allen AM, Barker GL, Berry ST, Coghill JA, Gwilliam R, Kirby S, Robinson P, Brenchley RC, Rosalinda DA, McKenzie N, Waite D, Hall A, Bevan M, Hall N, Edwards KJ. Transcript-specific, single-nucleotide polymorphism discovery and linkage analysis in hexaploid bread wheat (Triticum aestivum L.) [J]. Plant Biotechnol, 2011, 9: 1086-1099
24 Cavanagh CS, Chao S, Wang BE, Huang BE, Stephen S, Kiani S, Forrest K, Saintenac C, Brown-Guedira GL, Akhunova A, See D, Bai G, Pumphrey M, Tomar L, Wong D, Kong S, Reynolds M, da Silva ML, Bockelman H, Talbert L, Anderson JA, Dreisigacker S, Baenziger S, Carter A, Korzun V, Morrell PL, Dubcovsky J, Morell MK, Sorrells ME, Hayden MJ, Akhunov E. Genome-wide comparative diversity uncovers multiple targets of selection for improvement in hexaploid wheat landraces and cultivars [J]. PNAS, 2013, 110: 8057-8062
25 李立会. 小麦种植资源描述规范和数据标准[M]. 北京: 中国农业出版社, 2006: 8-45 [Li LH. Descriptors and Data Standard for Wheat (Triticunm aestivum L.) [M]. Beijing: Chinese Agricultural Science and Technology Press, 2006: 8-45]
26 Yan JB, Yang XH, Trushar Sm Hector SV, Li JS, Marilyn W, Zhou Y, Crouch JH, Xu YB. High-throughput SNP genotyping with the Golden Gate assay in maize [J]. Mol Breed, 2010, 25: 441-451
27 Van Ooijen JW. JoinMap? 4, Software for the calculation of genetic linkage maps in experimental populations [CP]. Kyazma B.V. Wageningen, Netherlands, 2006
28 Van Ooijen JW. MapQTL? 5, Software for the mapping of quantitative trait loci in experimental populations. Kyazma B.V. Wageningen, Netherlands, 2004
29 Wang SC, Debbie W, Kerrie F, Alexandra A, Shiaoman C, Bevan EH, Marco M, Silvio S, Sara GM, Luigi C, Anna MM, Alex W, Stuart S, Gary B, Ralf W, Joerg P, International Wheat Genome Sequencing Consortium, Morten L, Diane M, Rudi A, Rudy D, Gina BG, Abraham K, Alina RA, Catherine F, Jerome S, Michele M, Curtis P, Luo MC, Jan DMM, Jorge D, Martin G, Roberto T, Cindy L, Ivan M, Colin C, Keith JE, Matthew H, Eduard A. Characterization of polyploid wheat genomic diversity using a high-density 90 000 single nucleotide polymorphism array [J]. Plant Biotechnol J, 2014, 12: 787-796
30 陈建省, 陈广凤, 李青芳, 张晗, 师翠兰, 孙彩铃, 邓志英, 刘凯, 谷植群, 田纪春. 利用基因芯片技术进行小麦遗传图谱构建及粒重QTL分析. 中国农业科学, 2014, 47 (24): 4769-4779 [Chen JS, Chen GF, Li QF, Zhang H, Shi CL, Sun CL, Deng ZY, Liu K, Gu ZQ, Tian JC. Construction of genetic map using genotyping chips and QTL analysis of grain weight [J]. Sci Agric Sin, 2014, 47 (24): 4769-4779]
31 Chalmers KJ, Campbell AW, Kretschmer J. Construction of three linkage maps in bread wheat, Triticum aestivum [J]. Aust J Agric Res, 2001, 52: 1089-1119
32 Lehmensiek A, Eckermann PJ, Verbyla AP, Appels R, Sutherland MW, Daggard G. Curation of wheat maps to improve map accuracy and QTL detection [J]. Aust J Agric Res, 2005, 56: 1347-1354
33 Paillard S, Schnurbusch T, Winzeler M. An integrative genetic linkage map of winter wheat (Triticum aestivum L.) [J]. Theor Appl Genet, 2003, 107: 1235-1242
34 Liu ZH, Anderson JA, Hu J. Genetic linkage map based on microsatellite and target region amplified polymorphism markers and its utility for detecting quantitative trait loci [J]. Theor Appl Genet, 2005, 111: 782-794
35 Sourdille P, Cadalen T, Guyomarc’h H, Snape JW, Perretant MR, Charmet G, Boeuf C, Bernard S, Bernard M. An update of the Courtot × Chinese Spring molecular marker linkage map for the QTL detection of agronomic traits in wheat [J]. Theor Appl Genet, 2003, 106: 530-538
36 Somers DJ, Isaac P, Edwards K. A high-density microsatellite consensus map for bread wheat (Tiriticum aestivum L.) [J]. Theor Appl Genet, 2004, 115: 59-66
37 师翠兰, 郑菲菲, 陈建省, 韩淑晓, 王永瑞, 田纪春. 小麦山农01-35×藁城9411重组自交系遗传图谱构建及粒重QTL分析[J]. 作物学报, 2012, 38 (8): 1369-1377 [Shi CL, Zheng FF, Chen JS, Han SX, Wang YR, Tian JC. Construction of genetic map and analysis of QTLs for grain weight using a RIL population derived from Shannong 01-35 × Gaocheng 9411 [J]. Acta Agron Sin, 2012, 38 (8): 1369-1377]
38 Sourdille P, Singh S, Cadalen T. Microsatellite-based deletion bin system for the establishment of genetic-physical map relationships in wheat (Triticum aestivum L.) [J]. Funct Integr Genomics, 2004, 4: 12-22
39 Xu SJ, Singh RJ, Hymowitz T. Establishment of a cytogenetic map soybean: progress and prospective [J]. Soybean Genet Newsletter, 1997, 24: 121-122
40 Lyttle TW. Segregation distorters [J]. Annu Rev Genet, 1991, 25: 511-557
41 Knox MR, Ellis THN. Excess heterozygosity contributes to genetic map expansion in pea recombinant inbred population [J]. Genetics, 2002, 162: 861-873
42 Zhang KP, Zhao L, Tian JC, Chen GF, Jiang XL, Liu B. A genetic map conducted using a doubled haploid population derived from two elite Chinese common wheat (Triticum aestivum L.) varieties [J]. J Integr Plant Biol, 2008, 50 (8): 1-10
43 Lu H, Romero-Severson J, Bernardo R. Chromosomal regions associated with segregation distortion in maize [J]. Theor Appl Genet, 2002, 105: 622-628
44 Camilla BH, Julian DT, James E. Whole-genome mapping of agronomic and metabolic traits to identify novel quantitative trait loci in bread wheat grown in a water-limited environment 1 [J]. Plant Physiol, 2013, 162:1266-1281
45 张坤普, 徐宪斌, 田纪春. 小麦籽粒产量及穗部相关性状的QTL定位[J]. 作物学报, 2009, 35 (2): 270-278 [Zhang KP, Xu XB, Tian JC. QTL Mapping for grain yield and spike related traits in common wheat [J]. Acta Agron Sin, 2009, 35 (2): 270-278]
46 张秋, 郭栋, 樊庆琦. 山东省部分小麦种质成株期和苗期白粉病抗性鉴定[J]. 山东农业科学, 2012 (5): 86-88 [Zhang Q, Guo D, Fan QQ. Resistance identification of some wheat germplasms from Shandong Province to powdery mildew at adult and seedling stages [J]. Shandong Agric Sci, 2012 (5): 86-88 ]
47 Borner A, Schumann E, Furste A, Coster H, Leithold B, Rǒder MS, Weber WE. Mapping of quantitative trait loci deter mining agronomic important characters in hexaploid wheat (Triticum aestivum L.) [J]. Theor Appl Genet, 2002, 105 (6-7): 921-936
48 Wang JS, Liu WH, Wang H, Li LH, Wu J, Yang XM, Li XQ, Gao AN. QTL mapping of yield-related traits in the wheat germplasm 3228 [J]. Euphytica, 2010, 177 (2): 277-292
49 C. Lynne McIntyre,?Ky L. Mathews,?Allan R. Molecular detection of genomic regions associated with grain yield and yield-related components in an elite bread wheat cross evaluated under irrigated and rainfed conditions [J]. Theor Appl Genet, 2010, 120 (3): 527-541
50 Deng S, Wu X, Wu Y, Zhou R, Wang H, Jia J, Liu S. Characterization and precise mapping of a QTL increasing spike number with pleiotropic effects in wheat [J]. Theor Appl Genet, 2011, 122 (2): 281-289
51 Ma ZQ, Zhao DM. Zhang CQ. Molecular genetic analysis of five spike-related traits in wheat using RIL and immortalized F2 population [J]. Mol Genet Genomics, 2007, 277 (1): 31-42
52 Klindworth DL, Williams ND, Joppa LR. Chromosomal location of genes for supernumerary spikelet in tetraploid wheat [J]. Genome, 1990, 33 (4): 515-520
53 Marza F, Bai GH, Carver BF, Zhou WC. Quantitative trait loci for yield and related traits in the wheat population Ning7840 × Clark [J]. Theor Appl Genet, 2006, 112 (4): 688-698
54 Varshney RK, Prasad M, Roy JK. Identification of eight chromosomes and a microsatellite marker on 1AS associated with QTL for grain weight in bread wheat [J]. Theor Appl Genet, 2000, 100: 1290-1294
55 A mmiraju JSS, Dholakia BB, Santra DK. Identification of inter simple sequence repeat (ISSR) markers associated with seed size in wheat [J]. Theor Appl Genet, 2001, 102: 726-732

相似文献/References:

[1]刘琳,余懋群.偏凸山羊草6Mv染色体在不同四川小麦背景中的传递[J].应用与环境生物学报,2010,16(01):50.[doi:10.3724/SP.J.1145.2010.00050]
 LIU Lin,DENG Guangbing,YI Ling,et al.Transmission of Chromosome 6Mv from Aegilops ventricosa Through Gametes in Sichuan Wheat Varieties[J].Chinese Journal of Applied & Environmental Biology,2010,16(01):50.[doi:10.3724/SP.J.1145.2010.00050]

更新日期/Last Update: 2016-02-25