|本期目录/Table of Contents|

 LANG Xiaoqiang,WEI Congchong,QIN Shishang,et al.Species-specific evolution of glycerol-3-phosphate dehydrogenase (GPDH) gene family in plant[J].Chinese Journal of Applied & Environmental Biology,2016,22(01):75-84.[doi:10.3724/SP.J.1145.2015.05018]





Species-specific evolution of glycerol-3-phosphate dehydrogenase (GPDH) gene family in plant
郎小强 魏从翀 秦世尚 曹瑜 徐辉 乔代蓉 曹毅
四川大学生命科学学院微生物与代谢工程四川省重点实验室 成都 610065
LANG Xiaoqiang WEI Congchong QIN Shishang CAO Yu XU Hui QIAO Dairong & CAO Yi**
Microbiology and Metabolic Engineering Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu 610065, China
glycerol-3-phosphate dehydrogenase phylogenetic analysis functional divergence analyses selection pressure adaptive evolution analyses
3-磷酸甘油脱氢酶(GPDH)是一种在磷酸甘油酯的代谢过程中起重要调节作用的关键酶,研究植物中3-磷酸甘油脱氢酶基因家族的进化历史及其多样性对进一步探索基作用机制具有重要意义. 以20个已报道的GPDH基因作为查询序列,与19种代表性的植物物种的基因组分别进行BLASTP和tBLASTN比对以及隐马尔科夫模型搜索,获得基因家族新成员,构建系统发育树,并对其进行基因结构、蛋白模体、功能差异性以及适应性进化分析. 预测得到了75个新的GPDH基因家族成员,系统发育分析表明,植物中的GPDH基因属于3个单系类群(命名为族群I、族群II和族群III),并且在进化过程中主要分为两个进化枝,说明GPDH基因家族源自两个GPDH祖先基因;功能差异性分析表明,氨基酸特异性位点的选择性约束作用于不同族群的GPDH基因上,并且导致了不同族群多样化之后的特异性进化,同时,在族群 I/III和族群 II/III中也发现了Type-II功能差异性,表明氨基酸的理化性质也发生了本质的改变;适应性进化分析以及ka/ks比值分析表明,GPDH基因家族在物种特异性复制之后的进化过程中受到了纯化选择作用. 因此,GPDH基因家族在其进化过程中受到不同的选择压力而出现了不同的进化方向,形成了多样化的族群. 此外,对该基因家族进行的系统的分子进化探索为植物中GPDH基因家族的进一步生物化学和遗传方面的研究以及基因组分析提供了数据基础,在GPDH基因家族分析中的结果与发现也为研究其他基因家族提供了有力的帮助. (图5 表3 参32)
Glycerol-3-phosphate dehydrogenase (GPDH) is a kind of enzyme that plays an important role in phosphoric acid glyceride metabolism and regulates the process of glyceride metabolism by catalyzing the reversible redox conversion of dihydroxyacetone phosphate to SN-glycerol 3-phosphate. To better understand the evolutionary history and diversity of the GPDH gene family in plants, a series of genome-wide analysis was executed in our work. We acquired 20 known GPDH sequences through previous researches and the Genbank and other relevant databases. Then we used these sequences as query sequences to perform multiple Blast searches against plants whole-genome to retrieve GPDH-like sequences and identify the new members of the GPDH protein family in plants. Then we constructed the phylogenetic tree and performed gene structure and protein motif analyses, functional divergence, Ka/Ks ratio and adaptive evolution analyses. As a result, a total of 75 GPDH members were identified to belong to 2 clades and 3 monophyletic lineages, indicating that the GPDH genes arose from two ancestral GPDH genes. Functional divergence analyses showed that significant amino acid site-specific selective constraints acted on the different clades of GPDH genes. Adaptive evolution analyses and Ka/Ks ratioanalyses demonstrated that GPDH genes were subject to strong purifying selection after their species-specific duplications and that rapid evolution occurred with a high degree of evolutionary dynamics in GPDH genes. In conclusion, this study provides a better understanding of the evolutionary history and diversity of the GPDH gene family in plants, and offeres a foundation for further biochemical and genome-wide analyses and genetic studies of the GPDH gene family in plants. Moreover, the findings in this work provide insight into the function and evolution of this gene family in plant and pave the way for studies in other species.


1 Deng YT, Cheng H, Li G, Niu DY, Wu MJ, Wang XX. The influence of stress on activity of glycerol-3-phosphate dehydrogenase in Pichia farinose in low water potential [J]. Food Ferment Ind, 2005, 31 (3): 5-7
2 Huang Q, Cao Y, WU P, SHI Y, Zhang S, Qiao DY, Cao Y. Purification and antibody preparation and analysis of different domains of GPDH proteins from Dunaliella salina [J]. Chin J Apppl Environ Biol, 2009, 15 (2): 202-206
3 Harding JW, Pyertiz EA, Copeland ES, White HB. Role of glycerol 3-phosphate dehydrogenase in glyceride metabolism. Effect of diet on enzyme activities in chicken liver [J]. Biochem J, 1975, 146 (1): 223-229
4 Bunoust O, Devin A, Avéret N, Camougrand N, Rigoulet M. Competition of electrons to enter the respiratory chain: a new regulatory mechanism of oxidative metabolism in Saccharomyces cerevisiae [J]. J Biol Chem, 2005, 280 (5): 3407-3413
5 Kota V, Rai P, Weitzel JM, Middendorff R, Bhande SS, Shivaji S. Role of glycerol-3-phosphate dehydrogenase 2 in mouse sperm capacitation [J]. Mol Reprod Dev, 2010, 77 (9): 773-783
6 Zhao M, He LL, Gu YZ, Wang Y, Chen QS, He CY. Genome-wide analyses of a plant-specific LIM-domain gene family implicate its evolutionary role in plant diversification [J]. Genome Biol Evol, 2014, 6 (4): 1000-1012
7 Virginia A, Herrera VL, Laura A, Macario GL, Casais MG, Beltran AS, Peraza E. In silico cloning and characterization of the glycerol-3-phosphate dehydrogenase (GPDH) gene family in the green microalga Chlamydomonas reinhardtii [J]. Curr Microbiol, 2012, 64 (5): 477-485
8 Gee R, Goyal A, Byerrum RU, Tolbert NE. Two isoforms of dihydroxyacetone phosphate reductase from the chloroplasts of Dunaliella tertiolecta [J]. Plant Physiol, 1993, 103 (1): 243-249
9 Thompson JD, Higgins DG, Gibson TJ. CLUSTAL w:improving the sensitivity of progressive multiple sequence alignment through sequence weighiting position specific gap penalties and weight matrix choice [J]. Nucleic Acids Res, 1994, 22 (22): 4673-4680
10 Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, Valentin F, Wallace IM, Wilm A, Lopez R. Clustal W and Clustal X version 2.0 [J]. Bioinformatics, 2007, 23 (21): 2947-2948
11 Edgar RC. MUSCLE: multiple sequence alignment with high accuracy and high throughput [J]. Nucleic Acids Res, 2004, 32 (5): 1792-1797
12 Kumar S, Nei M, Dudley J,Tamura K. MEGA: a biologist-centric software for evolutionary analysis of DNA and protein sequences [J]. Brief Bioinform, 2008, 9 (4): 299-306
13 Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods [J]. Mol Biol Evol, 2011, 28 (10): 2731-2739
14 Guindon S, Dufayard JF, Lefort V, Anisimova M, Hordijk W, Gascuel O. New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0 [J]. Syst Biol, 2010, 59 (3): 307-321
15 John PH, Fredrik R, Rasmus N, Jonathan PB. Bayesian inference of phylogeny and its impact on evolutionary biology [J]. Science, 2001, 294 (5550): 2310-2314
16 Xia X, Xie Z. DAMBE: software package for data analysis in molecular biology and evolution [J]. J Hered, 2001. 92 (4): 371-373
17 Darriba D, Taboada GL, Doallo R, Posada D. ProtTest 3: fast selection of best-fit models of protein evolution [J]. Bioinformatics, 2011, 27 (8): 1164-1165
18 Bailey TL, Elkan C. Fitting a mixture model by expectation maximization to discover motifs in biopolymers [J]. Proc Int Conf Intell Syst Mol Biol, 1994. 2: 28-36
19 Bailey TL, GM. Combining evidence using p-values: application to sequence homology searches [J]. Bioinformatics, 1998, 14 (1): 48-54
20 Gu X. Statistical methods for testing functional divergence after gene duplication [J]. Mol Biol Evol, 1999, 16 (12): 1664-1674
21 Wang D, Zhang D, Zhang Z, Zhu J, Yu J. KaKs_Calculator 2.0: a toolkit incorporating gamma-series methods and sliding window strategies [J]. Genomics Proteomics Bioinform, 2010, 8 (1): 77-80
22 Fares MA. SWAPSC: sliding window analysis procedure to detect selective constraints [J]. Bioinformatics, 2004, 20 (16): 2867-2868
23 Yang Z. PAML: a program package for phylogenetic analysis by maximum likelihood [J]. Comput Appl Biosci, 1997, 13 (5): 555-556
24 Yang Z. PAML 4: phylogenetic analysis by maximum likelihood [J]. Mol Biol Evol, 2007, 24 (8): 1586-1591
25 Gu X. Maximum-likelihood approach for gene family evolution under functional divergence [J]. Mol Biol Evol, 2000, 18 (4): 453-464
26 Gu X. A simple statistical method for estimating type-II (cluster-specific) functional divergence of protein sequences [J]. Mol Biol Evol, 2006, 23 (10): 1937-1945
27 Fan S, Elmer KR, Meyer A. Positive Darwinian selection drives the evolution of the morphology-related gene, EPCAM, in particularly species-rich lineages of African cichlid fishes [J]. J Mol Evol, 2011, 73 (1-2): 1-9
28 Yang X, Tuskan GA, Cheng MZ. Divergence of the Dof gene families in poplar, Arabidopsis, and rice suggests multiple modes of gene evolution after duplication [J]. Plant Physiol, 2006, 142 (3): 820-830
29 Liu Q, Zhang CY, Yang YP, Hu XY. Genome-wide and molecular evolution analyses of the phospholipase D gene family in poplar and grape [J]. BMC Plant Biol, 2010, 10: 117
30 Wang Q, Wang M, Zhang X, Hao B, Kaushik SK, Pan Y. WRKY gene family evolution in Arabidopsis thaliana [J]. Genetica, 2011. 139 (8): 973-983
31 Liu Q, Sun YP, Su WJ, Yang J, Liu XM, Wang YF, Wang F, Li HY, Li XK. Species-specific size expansion and molecular evolution of the oleosins in angiosperms [J]. Gene, 2012, 509 (2): 247-257
32 Yang Z, Wong WS, Nielsen R. Bayes empirical bayes inference of amino acid sites under positive selection [J]. Mol Biol Evol, 2005, 22 (4): 1107-1118


 HUANG Qin,CAO Yu,WU Peng,et al.Purification and Antibody Preparation and Analysis of Different Domains of GPDH Proteins from Dunaliella salina[J].Chinese Journal of Applied & Environmental Biology,2009,15(01):202.[doi:10.3724/SP.J.1145.2009.00202]
 GUO Yanli,ZHANG Peiyu,YU Deshuang,et al.Isolation, Identification and Characteristics of a Slightly Halophilic Denitrifying Bacterium[J].Chinese Journal of Applied & Environmental Biology,2010,16(01):394.[doi:10.3724/SP.J.1145.2010.00394]
 YUAN Min,ZHANG Hui,HU Guoquan.Biological Characteristics and Phylogenetic Analysis of a Strain of Methanocorpusculum parvum[J].Chinese Journal of Applied & Environmental Biology,2010,16(01):705.[doi:10.3724/SP.J.1145.2010.00705]
 WANG Liping,ZHANG Liang,LIU Laiyan,et al.Comparative Study of Two Methanobacterium Strains in the Ancient Fermentation Pits of Luzhou[J].Chinese Journal of Applied & Environmental Biology,2010,16(01):840.[doi:10.3724/SP.J.1145.2010.00840]
 ZHANG Xiaoxia,QIU Fubin,SUN Lei,et al.Phylogenetic Analysis of Endophytic Ensifer adhaerens Isolated from Rice Roots[J].Chinese Journal of Applied & Environmental Biology,2010,16(01):779.[doi:10.3724/SP.J.1145.2010.00779]
 XIE Tianwen,YUAN Yuexiang,YAN Zhiying,et al.Characteristics of an Acidophilic Cellulase-producing Fungus and Optimization of Its Fermentation Condition[J].Chinese Journal of Applied & Environmental Biology,2010,16(01):863.[doi:10.3724/SP.J.1145.2010.00863]
[7]张霞,武志芳,张胜潮,等.贵州浓香型白酒大曲中霉菌的18S rDNA系统发育分析[J].应用与环境生物学报,2011,17(03):334.[doi:10.3724/SP.J.1145.2011.00334]
 ZHANG Xia,WU Zhifang,ZHANG Shengchao,et al.Phylogenetic Analysis of 18S rDNA Sequence of Mold from Luzhou-flavor Daqu[J].Chinese Journal of Applied & Environmental Biology,2011,17(01):334.[doi:10.3724/SP.J.1145.2011.00334]
 HAN Ming,YUAN Yuexiang,YAN Zhiying,et al.Screening of a Thermostable Cellulase-producing Strain and Its Enzymatic Properties[J].Chinese Journal of Applied & Environmental Biology,2012,18(01):75.[doi:10.3724/SP.J.1145.2012.00075]
 QIAN Dandan,MA Longlong,YUAN Yuexiang,et al.Isolation, Identification and Phylogenetic Analysis of an Alkalophilic Methanosarcina[J].Chinese Journal of Applied & Environmental Biology,2012,18(01):262.[doi:10.3724/SP.J.1145.2012.00262]
[10]王莉,凌琪,汤利华,等.Methylobacterium sp. YAL-2对乙酰甲胺磷的降解特性[J].应用与环境生物学报,2012,18(03):438.[doi:10.3724/SP.J.1145.2012.00438]
 WANG Li,LING Qi,TANG Lihua,et al.Degradation Characteristics of Acephate by Methylobacterium sp. YAL-2[J].Chinese Journal of Applied & Environmental Biology,2012,18(01):438.[doi:10.3724/SP.J.1145.2012.00438]

更新日期/Last Update: 2016-02-25