|本期目录/Table of Contents|

[1]秦汉,秦家亮,黄国印,等.常温氢氧化钠预处理芦苇酶解发酵产油[J].应用与环境生物学报,2016,22(01):120-126.[doi:10.3724/SP.J.1145.2015.05012]
 QIN Han,QIN Jialiang,HUANG Guoyin,et al.Cellulosic biofuels production from alkali-pretreated phragmites at room temperature[J].Chinese Journal of Applied & Environmental Biology,2016,22(01):120-126.[doi:10.3724/SP.J.1145.2015.05012]
点击复制

常温氢氧化钠预处理芦苇酶解发酵产油()
分享到:

《应用与环境生物学报》[ISSN:1006-687X/CN:51-1482/Q]

卷:
22卷
期数:
2016年01期
页码:
120-126
栏目:
研究论文
出版日期:
2016-02-25

文章信息/Info

Title:
Cellulosic biofuels production from alkali-pretreated phragmites at room temperature
作者:
秦汉 秦家亮 黄国印 刘海霞 刘博 史红霞 李宪玲 乔代蓉 曹毅
四川大学生命科学学院微生物与代谢工程四川省重点实验室 成都 610065
Author(s):
QIN Han QIN Jialiang HUANG Guoyin LIU Haixia LIU Bo SHI Hongxia LI Xianling QIAO Dairong & CAO Yi**
Microbiology and Metabolic Engineering Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu 610065, China
关键词:
芦苇氢氧化钠常温响应面微生物油脂
Keywords:
reed sodium hydroxide room temperature response surface method microbial oil
分类号:
TK63 : TQ920.1
DOI:
10.3724/SP.J.1145.2015.05012
摘要:
在室温(28 ℃)下对氢氧化钠预处理芦苇(Phragmites australis)条件进行单因素和响应面设计优化,对酶解的条件进行单因素优化,对酶解液成分进行HPLC分析,利用未经任何脱毒处理的酶解液发酵产油并与配制培养基对比,通过GC-MS对油脂脂肪酸组成进行分析. 结果表明:最佳预处理条件为氢氧化钠质量分数3.4%,预处理时间16 h,液固比20:1 mL/g,在初始酶解条件下酶解得到酶解液还原糖浓度为26.32 g/L;最佳酶解的条件为pH = 4.5,温度45 ℃,液固比10:1 mL/g,酶解时间48 h,纤维素酶和纤维二糖酶酶液添加量均为30 μL/g,得到酶解液还原糖浓度为40.01 g/L;经HPLC分析,酶解液中葡萄糖、木糖、阿拉伯糖和半乳糖比例分别为70.27%、19.83%、5.08%和4.82%;通过隐球酵母(Cryptococcus podzolicus)ZWY-2-3发酵产油,其生物量、油脂产量和油脂含量在4 d时达到最大,分别为8.63 g/L、2.56 g/L和29.68%,其与同等糖浓度的对照组配制作培养基相当. 本研究表明,芦苇是生产微生物油脂的潜在生物质原料,具有广阔的应用前景. (图4 表8 参26)
Abstract:
Phragmites australis are widely distributed in China and have a large biomass yield, which make it a kind of economical material for the production of biofuels. This paper aimed to study the possibility of biofuels production from phragmites pretreated by alkali at ambient temperature. RSM and single-factor method was used to optimize the pretreatment and enzymatic hydrolysis conditions of phragmites. HPLC was used to analyze the composition of the enzymatic hydrolysate. Fatty acid composition of fermented lipid with different culture medium types was analyzed by GC-MS. The results showed the best pretreatment conditions as NaOH mass fraction of 3.4%, the time for 16 h, the liquid-solid ratio of 20:1 with the maximum concentration of sugar under the conditions as 26.32 g/L. The optimum hydrolysis conditions were pH = 4.5, temperature 45 oC, liquid-solid ratio 10:1 mL/g, time 48 h, the addition amount of cellulase and cellobiase 30 μL/g. The maximum concentration of reducing sugar was 40.01 g/L under this condition. HPLC results showed that enzymatic hydrolysate contained glucose and xylose, arabinose and galactose, with a ratio of 70.27% : 19.83% : 5.08% : 4.82%. The fermentation with enzymatic liquids of biomass during the first 4 days got a maximum biomass of 8.403 g/L, oil yields of 2.463 g/L and oil content of 29.70% with little difference with the control group. The microbial lipids fermented by synthetic medium and enzymatic liquids were analyzed and the results showed that the grease was mainly oleic acid. The ingredients of oil fermented by the enzymatic liquids and the artificial medium are basically the same. These results indicate the feasibility of producing microbial oil from Phragmites australis.

参考文献/References:

1 Mood SH, GolfeshanAH, TabatabaeiM, Jouzani GS. Lignocellulosic biomass to bioethanol, a comprehensive review with a focus on pretreatment [J]. Renewable Sustainable Energy Revi, 2013, 27: 77-93
2 Ni Y, Sun ZH. Recent progress on industrial fermentative production of acetone butanol ethanol by Clostridium acetobutylicum in China [J]. Appl Microbiol Biotechnol, 2009, 83: 415-423
3 Mosier N, WymanC, BDale R, Elander R, Lee Y, Holtzapple M, Ladish M. Features of promising technologies for pretreatment of lignocellulosic biomass [J]. Bioresour Technol, 2005, 96: 673-686
4 Limayem A, Ricke SC. Lignocellulosic biomass for bioethanol production: current perspectives, potential issues and future prospects [J]. Progr Energy Combustion Sci, 2012, 38: 449-467
5 Zheng Y, Zhao J , Xu FQ , Li YB. Pretreatment of lignocellulosic wastes to improve ethanol and biogas production [J]. Progr Energy Combustion Sci, 2014, 42: 35-53
6 Shi J, Sharma-Shivappa RR, Chinn M, Howell N. Effect of microbial pretreatment on enzymatic hydrolysis and fermentation of cotton stalks for ethanol production [J]. Biomass Biofuels, 2009, 33: 88-96
7 Bari ID, Cuna D, Matteo VD, Liuzzi F. Bioethanol production from steam pretreated corn stover through an isomerase mediated process [J]. N Biotechnol, 2014, 31 (2): 185-195
8 JWu CY, Hutchings CH, Lindsay MJ, Werner CJ, BBundy C. Enhanced enzyme stability through site-directed covalent immobilization [J]. J Biotechnol, 2015, 193: 83-90
9 Li Q, Gao Y, Wang HS, Li B, Liu C, Yu G, Mu XD. Comparison of different alkali-based pretreatments of corn stover for improving enzymatic saccharification [J]. Bioresour Technol, 2012, 125: 193-199
10 Wang ZY, Li RY, Xu JL, JM Marita, Hatfield RD, Qu R, Cheng JJ. Sodium hydroxide pretreatment of genetically modified switchgrass for improved enzymatic release of sugar [J]. Bioresour Technol, 2012, 110: 364-370
11 Wang ZY, Keshwani DR, Redding AP, Cheng JJ. Sodium hydroxide pretreatment and enzymatic hydrolysis of coastal Bermuda grass [J]. Bioresour Technol, 2010, 101: 3583-3585
12 Barman DN, Haque MA, Kang TH, Kim GH, Kim TY, Kim MK, Yun HD. Effect of mild alkali pretreatment on structural changes of reed (Phragmites communis Trinius) straw [J]. Environ Technol, 2014, 35: 232-241
13 Sathitsuksanoh N, Zhu ZG, Zhang YPH. Cellulose solvent- and organic solvent-based lignocellulose fractionation enable efficient sugar release from a variety of lignocellulosic feedstocks [J]. Bioresour Technol, 2012, 117: 228-233
14 Sánchez OJ, Cardona CA. Trends in biotechnological production of fuel ethanol from different feedstocks [J]. Bioresour Technol, 2008, 99: 5270-5295
15 Gao K, Boiano S, Marzocchella A, Rehmann L. Cellulosic butanol production from alkali-pretreatment switchgrass (Panicum virgatum) and phragmites (Phragmites australis) [J]. Bioresour Technol, 2014, 174: 176-181
16 冀彤, 王冰冰, 夏黎明. 重组毕赤酵母发酵产纤维二糖酶[J]. 食品与发酵工业, 2010, 37: 17-20 [Ji T, Wang BB, Xia LM. Fermentation cellobiose enzymes by recombinant pichia [J]. Food Ferment Indus, 2010, 37: 17-20]
17 黄成毅, 杨赟博, 秦汉, 冯顺利, 郭明月, 徐清锐, 乔代蓉, 曹毅. 一株高产油酵母的筛选、鉴定及发酵条件优化[J]. 应用与环境生物学报, 2014, 20 (4): 609-614 [Huang GY, Yang YB, Qin H, Feng SL, GUO MY, Xu QR, Qiao DR,Cao Y. An oleaginous yeast strain: screening, identification and optimization of fermentation conditions [J]. Chin J Appl Environ Biol, 2014, 20 (4): 609-614]
18 Chu Q, Li X, Ma B, Xu Y, Yang JO, Zhu JJ, Yu SY, Yong Q. Bioethanol production: An integrated of low substrate loading hydrolysis-high sugars liquid fermentation and solid state fermentation of enzymatic hydrolysis residue [J]. Bioresour Technol, 2012, 123: 699-702
19 Miller GL. Use of dinitrosalicylic acid reagent for determination of reducing sugar [J]. Anal Chem, 1959, 31 (3): 426-428
20 Folch J, Less M, Sloane GH. A simple method for the isolation and purification of total lipids from animal tissues [J]. J Biol Chem, 1957, 226: 497-509
21 Shin JM, Hwang YO. Comparison of different methods to quantify fat classes in bakery products [J]. Food Chem, 2013, 136: 703-709
22 刘义. 四川地区产油脂微藻筛选分离及其多样性研究[D]. 成都: 四川大学, 2012 [Liu Y. Screen separation and biodiversity of Sichuan province [D]. Chengdu: Sichuan University, 2012]
23 McMillan JD. Enzymatic conversion of biomass for fuels production [J]. Am Chem Soc, 1994, 16: 854-859.
24 蔡侠. 乙醇原料芦苇的生物质酶解糖化研究[D]. 北京: 中国农业科学院麻类研究所, 2011 [Cai X. Enzymatic saccharification of Phragmites australis biomass in ethanol manufacturing [D]. Beijing: Chinese Academy of Agriculture Sciences Dissertation, 2011]
25 Xu JL, JCheng J, RSharma-Shivappa R, JBurns C. Sodium hydroxide pretreatment of swithgrass for ethanol production [J]. Energy Fuels, 2010, 24: 2113-2119
26 Qureshi N, Saha BC, Hector RE, Dien B, Hughes S, Liu S, Iten L, Bowman MJ, Sarath G, Cotta MA. Production of butanol (a biofuel) from agricultural residues: Part II-use of corn stover and switchgrass hydrolysates [J]. Biomass Bioenergy, 2010, 34: 566-571

相似文献/References:

[1]李有志,张灿明,谢永宏,等.三江平原小叶章和芦苇幼苗生长对低光胁迫的响应[J].应用与环境生物学报,2009,15(01):53.[doi:10.3724/SP.J.1145.2009.00053]
 LI Youzhi,ZHANG Canming,XIE Yonghong,et al.Growth Responses of Deyeuxia angustifolia and Phragmites communis Seedlings to Low-light Stress in the Sanjiang Plain*[J].Chinese Journal of Applied & Environmental Biology,2009,15(01):53.[doi:10.3724/SP.J.1145.2009.00053]
[2]王萌,王玉彬,陈章和.芦苇的种质资源及在人工湿地中的应用[J].应用与环境生物学报,2010,16(04):590.[doi:10.3724/SP.J.1145.2010.00590]
 WANG Meng,WANG Yubin,CHEN Zhanghe.Germplasm Resource of Phragmites adans and Its Application in Constructed Wetlands[J].Chinese Journal of Applied & Environmental Biology,2010,16(01):590.[doi:10.3724/SP.J.1145.2010.00590]
[3]韦菊阳,陈章和.梭鱼草和芦苇人工湿地对重金属和营养的去除率比较[J].应用与环境生物学报,2013,19(01):179.[doi:10.3724/SP.J.1145.2013.00179]
 WEI Juyang,CHEN Zhanghe.Removal of Heavy Metal Elements and Nutrients by Pontederia cordata and Phragmites australis Constructed Wetlands[J].Chinese Journal of Applied & Environmental Biology,2013,19(01):179.[doi:10.3724/SP.J.1145.2013.00179]
[4]戚志伟,高艳娜,樊同,等.崇明东滩围垦湿地芦苇生态特征与水盐因子的关系[J].应用与环境生物学报,2016,22(05):739.[doi:10.3724/SP.J.1145.2016.05042]
 QI Zhiwei,GAO Yanna,et al.Relationship between ecological characteristics of Phragmites australis and water-salt indicators in the reclaimed wetland at Dongtan of Chongming Island, China[J].Chinese Journal of Applied & Environmental Biology,2016,22(01):739.[doi:10.3724/SP.J.1145.2016.05042]
[5]戚志伟,高艳娜,李沙沙,等.长江口滨海湿地芦苇和白茅形态和生长特征对地下水位的响应[J].应用与环境生物学报,2016,22(06):986.[doi:10.3724/SP.J.1145.2016.04010]
 QI Zhiwei,GAO Yanna,et al.A comparative study of morphology and growth traits between Phragmites australis and Imperata cylindrica under varying ground water table in the coastal wetland of Yangtze River Estuary[J].Chinese Journal of Applied & Environmental Biology,2016,22(01):986.[doi:10.3724/SP.J.1145.2016.04010]
[6]李沙沙,樊同,张超,等.长江口芦苇和互花米草叶面积生长对立地增温的响应[J].应用与环境生物学报,2018,24(06):1247.[doi:10.19675/j.cnki.1006-687x.2018.01010]
 LI Shasha,et al..Response of the leaf area growth of Phragmites australis and Spartina alterniflora to elevated temperatures at the Yangtze River estuary[J].Chinese Journal of Applied & Environmental Biology,2018,24(01):1247.[doi:10.19675/j.cnki.1006-687x.2018.01010]

更新日期/Last Update: 2016-02-25