|本期目录/Table of Contents|

[1]南宏伟,刘庆,肖群英.中幼龄粗枝云杉(Picea asperata)根系的觅食能力[J].应用与环境生物学报,2015,21(03):547-554.[doi:10.3724/SP.J.1145.2015.02033]
 NAN Hongwei,LIU Qing,XIAO Qunying.Root foraging ability of spruce (Picea asperata) in two growth stages[J].Chinese Journal of Applied & Environmental Biology,2015,21(03):547-554.[doi:10.3724/SP.J.1145.2015.02033]
点击复制

中幼龄粗枝云杉(Picea asperata)根系的觅食能力()
分享到:

《应用与环境生物学报》[ISSN:1006-687X/CN:51-1482/Q]

卷:
21卷
期数:
2015年03期
页码:
547-554
栏目:
研究论文
出版日期:
2015-06-25

文章信息/Info

Title:
Root foraging ability of spruce (Picea asperata) in two growth stages
作者:
南宏伟刘庆肖群英
1山西农业大学林学院 晋中 0308012中国科学院成都生物研究所,中国科学院山地生态恢复与生物资源利用重点实验室,生态恢复与生物多样性保育四川省重点实验室 成都 6100413中国科学院大学 北京 100049
Author(s):
NAN Hongwei LIU Qing XIAO Qunying
1College of Forestry, Shanxi Agricultural University, Jinzhong 030801, China 2Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China3University of Chinese Academy of Sciences, Beijing 100049, China
关键词:
粗枝云杉觅食能力根系形态根系生理根系生物量
Keywords:
Picea asperata foraging ability root morphology root physiology root biomass
DOI:
10.3724/SP.J.1145.2015.02033
文献标志码:
A
摘要:
于四川省理县米亚罗林区选择幼龄期及中龄期两种生长阶段粗枝云杉个体为研究对象,采用挖掘法搜集全部根系,基于根系生物量及形态指标,从觅食器官总量角度定量衡量研究对象根系的觅食能力,并结合根序分级理论,基于前五级根序生理指标对其细根内部组分觅食效率进行评价,揭示其异质性规律. 结果显示,9年、12年和29年生云杉侧根总生物量分别为154.50、2 195.27、7 380.60 g,总表面积分别为3 295.38、39 564.93、179 023.54 cm2,其中细根生物量依次为27.74、188.79、1 022.89 g,总表面积分别为2 353.97、19 395.49、98 551.54 cm2. 根系比根长、总氮含量同根系觅食能力存在正相关关系. 随着根序的增加,云杉前五级根系比根长、总氮含量呈显著下降趋势(P = 0.000),因此,一级根至五级根根系觅食能力逐渐下降,细根内部组分觅食能力存在显著异质性. 其中,一级根比根长和总氮含量远远大于其他根序,是云杉细根内部觅食能力最高的部分. 云杉前五级根序非结构性碳水化合物(NSC)及其组分含量较低,随根序增加无显著变化规律,各根序自身NSC储量无法成为其觅食行为的主要能量供应源. 上述研究结果为植物行为学研究,乃至森林地下生态学过程研究提供了基础数据,同时进一步丰富了对树木根系结构与功能的认识.
Abstract:
The extensive distribution and complex structure of the root system of woody plants in soil makes it difficult to understand its foraging ability. This paper aimed to quantitatively measure the foraging ability of the whole tree root system of spruce (Picea asperata), the dominant tree species in the subalpine coniferous forests of western Sichuan, China, and to reveal the heterogeneity of foraging ability of fine root fractions. The whole root systems of three 9-year-old, three 12-year-old, and three 29-year-old spruce in two growth stages were excavated cautiously by hand. Based on the root biomass and root morphology index, foraging ability of whole root systems of the target plant was quantitatively expressed by the total amount of foraging organ; root foraging efficiency of internal components of fine root was evaluated by means of its physiological indices, including total N, total C, and non-structure carbohydrate (NSC); the heterogeneity of foraging ability of fine root fractions was also clarified. The results showed a whole lateral root biomass of 154.5 g for the 9-year-old spruce, 2 195.27 g for the 12-year-old spruce, and 7 380.60 g for the 29-year-old spruce, with fine root biomass of 27.74 g, 188.79 g, and 1 022.89 g, respectively. There was an upward trend in the total length and in the total surface area of the whole lateral root systems or fine roots of spruce. The specific root length and total nitrogen content were positively correlated with root foraging ability. With the increase of root orders, specific root length, and total N content of the first five root order of spruce took on an upward trend. It suggested that the root foraging ability declined with the increase of root order, and there was significant heterogeneity among the internal components of fine root. The specific root length and total N content of the first order were far more than the other root orders, and the first order root foraging ability was the best among roots of all the first five orders. The nonstructural carbohydrates concentration and its fractions of the first five root orders were small, exhibiting no specific tendency, which suggested that the NSC stored in the first five root order was not enough for its foraging behavior. The physiological differences among growth stages showed that the age of tree had a significant impact on root physiological characteristics, and implied that with the increase of age of tree, the foraging efficiency of the first order root of spruce might decline. These conclusions enrich our understanding of the structure and function of root systems of woody plant at the perspective of the root foraging ability.

参考文献/References:

1 Silvertown J. Plant phenotypic plasticity and non-cognitive behavior [J]. Trends Ecol Evol, 1998, 13: 255-256
2 Kembel SW, De Kroon H, Cahill JF, Mommer L. Improving the scale and precision of hypotheses to explain root foraging ability [J]. Ann Bot, 2008, 101: 1295-1301
3 Karban R. Plant behaviour and communication [J]. Ecol Lett, 2008, 11: 727-739
4 De Kroon H, Visser EJW, Huber H, Hutchings MJ. A modular concept of plant foraging behaviour: the interplay between local responses and systemic control [J]. Plant Cell Environ, 2009, 32: 704-712
5 Lucash MS, Eissenstat DM, Joslin JD, McFarlane KJ, Yanai RD. Estimating nutrient uptake by mature tree roots under field conditions: challenges and opportunities [J]. Trees-Struct Funct, 2007, 21: 593-603
6 Cheng S, Widden P, Messier C. Light and tree size influence belowground development in yellow birch and sugar maple [J]. Plant Soil, 2005, 270: 321-330
7 Cheng S. Lorentzian model of roots for understory yellow birch and sugar maple saplings [J]. J Theor Biol, 2007, 246: 309-322
8 Guo DL, Mitchell RJ, Hendricks JJ. 2004. Fine root branch orders respond differentially to carbon source-sink manipulations in a longleaf pine forest [J]. Oecologia, 140: 450-457
9 Guo DL, Xia MX, Wei X, Chang WJ, Liu Y, Wang ZQ. Anatomical traits associated with absorption and mycorrhizal colonization are linked to root branch order in twenty-three Chinese temperate tree species [J]. New Phytol, 2008, 180: 673-683
10 Wells CE, Glenn DM, Eissenstat DM. Changes in the risk of fine-root mortality with age: a case study in peach, Prunus persica (Rosaceae) [J]. Am J Bot, 2002, 89: 79-87
11 Pregitzer KS, DeForest JL, Burton AJ, Allen MF, Ruess RW, Hendrick RL. Fine root architecture of nine North American trees [J]. Ecol Monogr, 2002, 72: 293-309
12 刘庆, 林波. 全球气候变化对亚高山针叶林树木的影响[M]. 北京: 科学出版社, 2010 [Liu Q, Lin B. Effects of global climate change on subalpine coniferous forest trees [M]. Beijing: Science Press, 2010]
13 郭宁, 邢韶华, 姬文元, 崔国发, 汪明, 薛樵, 蒋先敏. 川西米亚罗林区冷杉林群落特征与生态因子的关系[J]. 生态学杂志, 2010, 29 (6): 1054-1060 [Guo N, Xing SH, Ji WY, Cui GF, Wang M, Xue Q, Jiang XM. Relationships between fir community characteristics and ecological factors in Miyaluo forest area of West Sichuan [J]. Chin J Ecol, 2010, 29 (6): 1054-1060]
14 胡蓉, 林波, 刘庆. 林窗与凋落物对人工云杉林早期更新的影响[J]. 林业科学, 2011, 47 (6): 24-29 [Hu R, Lin B, Liu Q. Effects of forest gaps and litter on the early regeneration of Picea asperata plantations [J]. Sci Silv Sin, 2011, 47 (6): 24-29]
15 张远东, 赵常明, 刘世荣. 川西米亚罗林区森林恢复的影响因子分析[J]. 林业科学, 2005, 41 (4): 189-193 [Zhang YD, Zhao CM, Liu SR. The influence factors of sub-alpine forest restoration in miyaluo, west sichuan [J]. Sci Silv Sin, 41 (4): 189-193]
16 何海, 乔永康, 刘庆, 吴彦, 林波. 亚高山针叶林人工恢复过程中生物量和材积动态研究[J]. 应用生态学报, 2004, 15 (5): 748-752 [He H, Qiao YK, Liu Q, Wu Y, Lin B. Dynamics of biomass and stem volume of Picea asperata stands in artificial restoration process of subalpine coniferous forest [J]. Chin J Appl Ecol, 2004, 15 (5): 748-752]
17 李娇, 蒋先敏, 尹春英, 魏宇航, 刘庆. 不同林龄云杉人工林的根系分泌物与土壤微生物[J]. 应用生态学报, 2014, 25 (2): 325-222 [Li J, Jiang XM, Yin CY, Wei YH, Liu Qing. Root exudates and soil microbes in three Picea asperata plantations with different stand ages [J]. Chin J Appl Ecol, 2014, 25 (2): 325-222]
18 四川植被协作组. 四川植被[M]. 成都: 四川人民出版社, 1980
19 孟宪宇. 测树学[M]. 3版. 北京: 中国林业出版社, 2006 [Meng XY. Forest mensutation [M]. 3rd ed. Beijing: Chinese Forestry Publishing House, 2006]
20 南宏伟, 贺秀斌, 鲍玉海, 王莉, 刘艳锋. 桑树根系对紫色土土壤抗剪强度的影响[J]. 中国水土保持, 2011 (8): 48-51 [Nan HW, He XB, Bao YH, Wang L, Liu YF. Influence of root system of Morus alba to shearing resistance of purple soil [J]. Soil Water Convers Chin, 2011 (8): 48-51]
21 Yin CY, Pu XZ, Xiao QY, Zhao CZ, Liu Q. Effects of night warming on spruce root around non-growing season vary with branch order and month [J]. Plant Soil, 2014, 380: 249-263
22 Shi P, K?rner C, Hoch G. End of season carbon supply status of woody species near the treeline in western China [J]. Basic Appl Ecol, 2006, 7: 370-377
23 严小龙. 根系生物学: 原理与应用[M]. 北京: 科学出版社, 2007 [Yan XL. Root biology: principles and applications [M]. Beijing: Science Press, 2007]
24 Ostonen, PüTTSEPP ?, BIEL C, Alberton O, Bakker MR, L?hmus K, Majdi H, Metcalfe D, Olsthoorn AFM, Pronk A, Vanguelova E, Weih M, Brunner I. Specific root length as an indicator of environmental change [J]. Plant Biosyst, 2007, 141: 426-442
25 Wang ZQ, Guo DL, Wang XR. Fine root architecture, morphology, and biomass of different branch orders of two Chinese temperate tree species [J]. Plant Soil, 2006, 288: 155-171
26 Guo DL, Mitchell RJ, Withington JM, Fan PP, Hendricks JJ. Endogenous and exogenous controls of root life span, mortality and nitrogen flux in a longleaf pine forest: root branch order predominates [J]. J Ecol, 2008, 96: 737-745
27 于立忠, 丁国泉, 史建伟, 于水强, 朱教君, 赵连富. 施肥对日本落叶松人工林细根直径、根长和比根长的影响[J]. 应用生态学报, 2007, 18 (5): 957-962 [Yu LZ, Ding GQ, Shi JW, Yu SQ, Zhu JJ, Zhao LF. Effects of fertilization on fine root diameter, root length and specific root length in Larix kaempferi plantation [J]. Chin J Appl Ecol, 2007, 18 (5): 957-962]
28 Burton AJ, Pregitzer KS, Ruess RW, Hendrick RL, Allen MF. Root respiration in North American forests: effects of nitrogen concentration and temperature across biomes [J]. Oecologia, 2002, 131: 559-568
29 Burton AJ, Jarvey JC, Jarvi MP, Zak DR. Chronic N deposition alters root respiration-tissue N relationship in northern hardwood forests [J]. Global Change Biol, 2012, 18: 258-266
30 Reich PB, Tjoelker MG, Pregitzer KS, Wright IJ, Oleksyn J, Machado JL. Scaling of respiration to nitrogen in leaves, stems and roots of higher land plants [J]. Ecol Lett, 2008, 11: 793-801
31 Pregitzer KS, Kubiske ME, Yu CK, Hendrick RL. Relationships among root branch order, carbon, and nitrogen in four temperate species [J]. Oecologia, 1997, 111: 302-308
32 Fan PP, Jiang YX. Nitrogen dynamics differed among the first six root branch orders of Fraxinus mandshurica and Larix gmelinii during short-term decomposition [J]. J Plant Res, 2010, 123: 433-438
33 Kozlowski TT. Carbohydrate sources and sinks in woody plants [J]. Bot Rev, 1992, 58: 107-222
34 Koch KE. Carbohydrate-modulated gene expression in plants [J]. Annu Rev Plant Physiol Plant Mol Biol, 1996, 7: 509-540
35 Schulze ED. Plant life forms and their carbon, water and nutrient relations [M]//Lange OL, Nobel PS, Osmond CB, Ziegler H. Encyclopedia of plant physiology. Berlin: Springer-Verlag, 1982: 616-676
36 于丽敏, 王传宽, 王兴昌. 三种温带树种非结构性碳水化合物的分配[J]. 植物生态学报, 2011, 35 (12): 1245-1255 [Yu LM, Wang CK, Wang XC. Allocation of nonstructural carbohydrates for three temperate tree species in Northeast China [J]. Chin J Plant Ecol, 2011, 35 (12): 1245-1255]

相似文献/References:

[1]庄丽燕,唐仕姗,杨万勤,等.川西亚高山3个优势树种细根形态特征[J].应用与环境生物学报,2016,22(22卷04):618.[doi:10.3724/SP.J.1145.2015.11025]
 ZHUANG Liyan,TANG Shishan,et al.Fine root morphology of different branch orders of three dominant subalpine tree species in western Sichuan*[J].Chinese Journal of Applied & Environmental Biology,2016,22(03):618.[doi:10.3724/SP.J.1145.2015.11025]
[2]刘群,庄丽燕,杨万勤,等.川西亚高山森林两种优势树种不同径级根系腐殖化特征[J].应用与环境生物学报,2017,23(04):665.[doi:10.3724/SP.J.1145.2017.01015]
 LIU Qun,ZHUANG Liyan,YANG Wanqin,et al.Effect of the hydrogen-producing bacterium FSC-15 on methanogenesis during rice straw anaerobic fermentation[J].Chinese Journal of Applied & Environmental Biology,2017,23(03):665.[doi:10.3724/SP.J.1145.2017.01015]

备注/Memo

备注/Memo:
中国科学院战略性先导科技专项(XDA05050303)、国家自然科学基金项目(31470630)和山西农业大学引进人才博士科研启动费项目(2013YJ17)资助 Supported by the Strategic Priority Research Program of the Chinese Academy of Sciences (XDA05050303), the National Natural Science Foundation of China (31470630), and the Talent-Recruiting Program of Shanxi Agricultural University (2013YJ17)
更新日期/Last Update: 2015-06-23