|本期目录/Table of Contents|

[1]邓腾,杨莉娟,罗国勇,等.蛋白酪氨酸磷酸酶SHP2抑制剂体外筛选模型的建立及应用[J].应用与环境生物学报,2015,21(04):602-606.[doi:10.3724/SP.J.1145.2015.01040]
 DENG Teng,YANG Lijuan,LUO Guoyong,et al.Establishment and application of in vitro screening platform for inhibitors of protein tyrosine phosphate SHP2[J].Chinese Journal of Applied & Environmental Biology,2015,21(04):602-606.[doi:10.3724/SP.J.1145.2015.01040]
点击复制

蛋白酪氨酸磷酸酶SHP2抑制剂体外筛选模型的建立及应用()
分享到:

《应用与环境生物学报》[ISSN:1006-687X/CN:51-1482/Q]

卷:
21卷
期数:
2015年04期
页码:
602-606
栏目:
研究论文
出版日期:
2015-08-25

文章信息/Info

Title:
Establishment and application of in vitro screening platform for inhibitors of protein tyrosine phosphate SHP2
作者:
邓腾 杨莉娟 罗国勇 李晟 杜宝文 王飞
1中国科学院成都生物研究所 成都 610041 2中国科学院大学 北京 100049
Author(s):
DENG Teng YANG Lijuan LUO Guoyong LI Sheng Du Baowen WANG Fei
1Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China 2University of Chinese Academy of Sciences, Beijing 100049, China
关键词:
SHP2抑制剂体外筛选Shandougenine A
Keywords:
SHP2 inhibitor in vitro screening Shandougenine A
分类号:
R914.4
DOI:
10.3724/SP.J.1145.2015.01040
文献标志码:
A
摘要:
蛋白酪氨酸磷酸酶SHP2(Src homology phosphotyrosyl phosphatase 2)参与了JAK/STAT、NF-κB和P13K/AKT等诸多信号途径的调控,与努南综合征、单核细胞白血病、骨髓增生异常综合征、B细胞急性淋巴细胞白血病和急性髓性白血病等疾病密切相关. 因此,建立稳定可靠的体外SHP2抑制剂筛选模型,对于发现高效的化学小分子探针并深入研究相关机制,以及开发新药物治疗相关疾病具有重要意义. 通过应用大肠杆菌系统克隆表达可溶的GST-SHP2融合蛋白,以矾酸钠(Na3VO4)为阳性抑制剂,本文建立基于96孔板的SHP2体外筛选模型,并对该模型的有效性进行评价. 利用该筛选模型筛选了1 431个化合物,发现从植物山豆根(Sophora tonkinensis)中提取得到的化合物Shandougenine A对SHP2具有明显的抑制作用,进一步研究发现其浓度依赖性抑制SHP2活性,IC50值为(11.72 ± 2.6) μmol/L. 本文筛选模型的建立,为发现SHP2抑制剂提供了一条简便高效的途径,并为后续的机制研究及药物开发奠定了良好基础.
Abstract:
The protein tyrosine phosphatase SHP2 (Src homology phosphotyrosyl phosphatase 2, encoded by PTPN11 gene) is widely expressed and involved in multiple cell signaling processes, such as the JAK/STAT, NF-κB and P13K/AKT pathways. Mutations of PTPN11 have been found in Noonan syndrome, juvenile myelomonocytic leukemia (JMML), and several types of human malignancies. In order to discover potent small molecules regulating SHP2, we set up an in vitro screening platform for SHP2 based on GST-SHP2 fusion protein expressed by E. coil expression system. This model was validated using Na3VO4 as the positive inhibitor; a compound library with 1 431 natural or synthetic compounds was screened. This effort led to the identification of Shandougenine A, isolated from Sophora tonkinensis, displaying potent inhibitory activity toward SHP2 protein with the IC50 value of 11.72±2.6 μmol/L. The establishment of this in vitro screening model provides an effective and convenient platform to find novel SHP2 inhibitors, which may be used as potential probes for investigating SHP2-ralated mechanisms or drug candidates for the treatment of SHP2-related diseases.

参考文献/References:

1 Eck MJ, Pluskey S, Trub T, Harrison SC, Shoelson SE. Spatial constraints on the recognition of phosphoproteins by the tandem SH2 domains of the phosphatase SH-PTP2 [J]. Nature, 1996, 379: 277-280 2 Barford D, Neel BG. Revealing mechanisms for SH2 domain mediated regulation of the protein tyrosine phosphatase SHP-2 [J]. Structure, 1998, 6: 249-254 3 Alonso A, Sasin J, Bottini N, Friedberg I, Friedberg I, Osterman A, Godzik A, Hunter T, Dixon J, Mustelin T. Protein tyrosine phosphatases in the human genome [J]. Cell, 2004, 117 (6): 699-711 4 Neel BG, Gu H, Pao L. The ‘Shp’ ing news: SH2 domain-containing tyrosine phosphatases in cell signaling [J]. Trends Biochem Sci, 2003, 28 (6): 284-293 5 Hof P, Pluskey S, Dhe-Paganon S, Eck MJ, Shoelson SE. Crystal structure of the tyrosine phosphatase SHP-2 [J]. Cell, 1998, 92 (4): 441-450 6 Loh ML, Vattikuti S, Schubbert S, Reynolds MG, Carlson E, Lieuw KH, Cheng JW, Lee CM, Stokoe D, Bonifas JM, Curtiss NP, Gotlib J, Meshinchi S, Le Beau MM, Emanuel PD, Shannon KM. Mutations in PTPN11 implicate the SHP-2 phosphatase in leukemogenesis [J]. Blood, 2004, 103: 2325-2331 7 Loh ML, Reynolds MG, Vatlson tikuti S, Gerbing RB, Alonzo TA, Carlson E, Cheng JW, Lee CW, Lange BJ, Meshinchi S. PTPN11 mutations in pediatric patient with acute myeloid leukemia: results from the children’s Cancer Group [J]. Leukemia, 2004, 18: 1831-1834 8 Tartaglia M, Martinelli S, Cazzaniga G, Cordeddu V, Iavarone I, Spinelli M, Palmi C, Carta C, Pession A, Aricò M, Masera G, Basso G, Sorcini M, Gelb BD, Biondi A. Genetic evidence for lineage-related and differentiation stage-related contribution of somatic PTPN11 mutations to leukemogenesis in childhood acute leukemia [J]. Blood, 2004, 104 (2): 307-313 9 Tartaglia M, Mehler EL, Goldberg R, Zampino G, Brunner HG, Kremer H, van der Burgt I, Crosby AH, Ion A, Jeffery S, Kalidas K, Patton MA, Kucherlapati RS, Gelb BD. Mutations in PTPN11, encoding the protein tyrosine phosphatase SHP-2, cause Noonan syndrome [J]. Nat Genet, 2001, 29 (4): 465-468 10 Chan G, Kalaitzidis D, Neel BG. The tyrosine phosphatase Shp2 (PTPN11) in cancer [J]. Cancer Metastasis Rev, 2008, 27 (2): 179-192 11 Xu D, Qu CK. Protein tyrosine phosphatases in the JAK/STAT pathway [J]. Front Biosci, 2008, 13: 4925-4932 12 Liu W, Yu B, Xu G, Xu WR, Loh ML, Tang LD, Qu CK. Identification of cryptotanshinone as an inhibitor of oncogenic protein tyrosine phosphatase SHP2 (PTPN11) [J]. J Med Chem, 2013, 56 (18): 7212-7221 13 Bialy L, Waldmann H. Inhibitors of protein tyrosine phosphatases: next-generation drugs? [J]. Angew Chem Int Ed Engl, 2005, 44 (25): 3814-3839 14 Chen L, Sung SS, Yip ML, Lawrence HR, Ren Y, Guida WC, Sebti SM, Lawrence NJ, Wu J. Discovery of a novel shp2 protein tyrosine phosphatase inhibitor [J]. Mol Pharmacol, 2006, 70 (2): 562-570 15 Luo GY, Yang Y, Zhou M, Ye Q, Liu Y, Gu J, Zhang GL, Luo YG. Novel 2-arylbenzofuran dimer and polyisoprenylated flavanones from Sophora tonkinensis [J]. Fitoterapia, 2014, 99: 21-27 16 Welte S, Baringhaus K-H, Schmider W, Muller G, Petry S, Tennagels N. 6,8-Difluoro-4-methylumbiliferyl phosphate: a fluorogenic substrate for protein tyrosine phosphatases [J]. Anal Biochem, 2005, 338: 32-38 17 Pu WC, Wang F, Wang C. Bioactivities and synthetic methods of 2-arylbenzo[b]furans [J]. Chin J Org Chem, 2011, 31 (2): 155-165 18 Zeng LF, Zhang RY, Yu ZH, Li S, Wu L, Gunawan AM, Lane BS, Mali RS, Li X, Chan RJ, Kapur R, Wells CD, Zhang ZY. Herapeutic potential of targeting the oncogenic SHP2 phosphatase [J]. J Med Chem, 2014, 57 (15): 6594-6609 19 Dixit M, Tripathi BK, Tamarakar AK, Srivastava AK, Kumar B, Goel A. Synthesis of benzofuran scaffold-based potential PTP-1B inhibitors [J]. Bioorg Med Chem, 2007, 15 (2): 727-734 20 He YT, Xu J, Yu ZH, Guanwan AM, Wu L, Wang LN, Zhang ZY. Discovery and evaluation of novel inhibitors of mycobacterium protein tyrosine phosphatase B from the 6-hydroxy-benzofuran-5-carboxylic acid scaffold [J]. J Med Chem, 2013, 56 (3): 832-842 21 He Y, Liu S, Menon A, Stanford S, Oppong E, Gunawan AM, Wu L, Wu DJ, Barrios AM, Bottini N, Cato AC, Zhang ZY. A potent and selective small-molecule inhibitor for the lymphoid-specifictyrosine phosphatase (LYP), a target associated with autoimmune diseases [J]. J Med Chem, 2013, 56 (12): 4990-5008

相似文献/References:

[1]李洁琼,郑世学,喻子牛,等.乙酰辅酶A羧化酶:脂肪酸代谢的关键酶及其基因克隆研究进展[J].应用与环境生物学报,2011,17(05):753.[doi:10.3724/SP.J.1145.2011.00753]
 LI Jieqiong,ZHENG Shixue,YU Ziniu,et al.Acetyl-coenzyme A Carboxylase: A Key Metabolic Enzyme of Fatty Acid and Progress of Its Gene Clone[J].Chinese Journal of Applied & Environmental Biology,2011,17(04):753.[doi:10.3724/SP.J.1145.2011.00753]
[2]席芮颖,付乃洁,李润择,等.氯氰碘柳胺钠通过抑制蛋白酪氨酸磷酸酶SHP2诱导RAS突变型肺癌细胞衰老和死亡[J].应用与环境生物学报,2022,28(02):365.[doi:10.19675/j.cnki.1006-687x.2021.01044]
 XI Ruiying,FU Naijie,et al.Closantel sodium induces RAS mutation lung cancer cell senescence and death by inhibiting protein tyrosine phosphatase SHP2[J].Chinese Journal of Applied & Environmental Biology,2022,28(04):365.[doi:10.19675/j.cnki.1006-687x.2021.01044]
[3]席芮颖 付乃洁 李润择 张国林 王飞**.氯氰碘柳胺钠通过抑制蛋白酪氨酸磷酸酶SHP2诱导RAS突变型肺癌细胞衰老和死亡[J].应用与环境生物学报,2022,28(03):1.[doi:10.19675/j.cnki.1006-687x.2021.01044]
 XI Ruiying,FU Naijie,LI Runze,et al.Closantel sodium induces RAS mutation lung cancer cell senescence and death by inhibiting protein tyrosine phosphatase SHP2[J].Chinese Journal of Applied & Environmental Biology,2022,28(04):1.[doi:10.19675/j.cnki.1006-687x.2021.01044]
[4]李润择 曹东怡 张中辉 李晟 吴嘉思 王飞**.半胱氨酸天冬氨酸蛋白水解酶caspase-1抑制剂体外筛选模型的构建及应用[J].应用与环境生物学报,2022,28(03):1.[doi:10.19675/j.cnki.1006-687x.2021.02064]
 LI Runze,CAO Dongyi,et al.Establishment and application of screening model of caspase-1 inhibitor in vitro[J].Chinese Journal of Applied & Environmental Biology,2022,28(04):1.[doi:10.19675/j.cnki.1006-687x.2021.02064]

备注/Memo

备注/Memo:
四川省科技厅基础支撑计划项目(2012SZ0219)和四川省青年科技基金项目(2014JQ0028)资助 Supported by the Pillar Program of Science and Technology Department of Sichuan Province (2012SZ0219) and the Sichuan Youth Science & Technology Foundation (2014JQ0028)
更新日期/Last Update: 2015-08-24