|本期目录/Table of Contents|

[1]康晓明,崔丽娟,郝彦宾,等.极端干旱对内蒙古羊草草原水分平衡的影响[J].应用与环境生物学报,2015,21(04):700-709.[doi:10.3724/SP.J.1145.2014.12019]
 KANG Xiaoming,CUI Lijuan,HAO Yanbin,et al.Effects of extreme drought on the water balance of a Leymus chinensis steppe in Inner Mongolia, China[J].Chinese Journal of Applied & Environmental Biology,2015,21(04):700-709.[doi:10.3724/SP.J.1145.2014.12019]
点击复制

极端干旱对内蒙古羊草草原水分平衡的影响()
分享到:

《应用与环境生物学报》[ISSN:1006-687X/CN:51-1482/Q]

卷:
21卷
期数:
2015年04期
页码:
700-709
栏目:
研究论文
出版日期:
2015-08-25

文章信息/Info

Title:
Effects of extreme drought on the water balance of a Leymus chinensis steppe in Inner Mongolia, China
作者:
康晓明 崔丽娟 郝彦宾 李伟 崔骁勇 王艳芬
1中国林业科学研究院湿地研究所,湿地生态功能与恢复北京市重点实验室 北京 100091 2中国科学院大学生命科学学院 北京 100049
Author(s):
KANG Xiaoming CUI Lijuan HAO Yanbin LI Wei CUI Xiaoyong WANG Yanfen
1Beijing Key Laboratory of Wetland Services and Restoration, Institute of Wetland Research, Chinese Academy of Forestry, Beijing 100091, China 2College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
关键词:
极端干旱羊草草原水分平衡蒸发/蒸腾涡度相关DNDC模型
Keywords:
extreme drought Leymus chinensis steppe water balance evaporation/transpiration eddy covariance DNDC model
分类号:
Q149
DOI:
10.3724/SP.J.1145.2014.12019
文献标志码:
A
摘要:
频繁出现的极端干旱事件会使水分循环的关键过程发生改变,进而显著影响生态系统的过程和功能. 为了定量分析极端干旱对半干旱草原水分平衡的影响,利用内蒙古羊草(Leymus chinensis)草原生态系统通量观测站1978-2005年的气象数据、野外实测数据,对基于过程的生物地球化学循环模型——DNDC(Denitrification-decomposition)进行参数化,模拟羊草草原生态系统2004-2005年各水分通量(蒸散、蒸腾、蒸发)和水分平衡的动态变化过程,分析极端干旱对蒸散、蒸腾、蒸发的影响. 通过与涡度相关实测数据对比发现:参数化后的DNDC模型能够很好地模拟羊草草原生态系统的水分通量,在峰值大小和时间动态上,模拟值与实测值有较好的一致性(R2 = 0.68,P < 0.0001),且实测和模拟结果都发现2005年的极端干旱使蒸散量显著降低(P < 0.0001). 基于参数化后的DNDC模型对植物蒸腾和土壤蒸发也进行了定量分离,发现与2004年相比,极端干旱使年蒸腾量降低了57%,年蒸散量降低了30%,生态系统由水分盈余转为严重的水分亏缺,进而使总初级生产力降低了73%,影响生态系统的碳源/汇功能. 而且,羊草草原生态系统水分平衡发生改变的降水阈值为20.8 mm/月. 本研究表明,极端干旱显著改变了植被蒸腾和土壤蒸发对蒸散的相对贡献,其对植被蒸腾的影响要远大于对土壤蒸发的影响.
Abstract:
Potential changes in both the intensity and frequency of extreme drought events can alter the distribution and dynamics of water availability and subsequently affect biological processes at the ecosystem level. This research aimed to study the effects of extreme drought on the water balance for a Leymus chinensis steppe in Inner Mongolia, China. In this study, a process-based biogeochemical model, Denitrification-decomposition (DNDC), together with eddy covariance (EC) technique, was modified and employed for the first time to simulate and interpret dynamics of water fluxes including evapotranspiration (ET), transpiration (T) and evaporation (E) and analyze the water balance for the targeted steppe during 2004–2005. Daily weather data of 1978–2005 in conjunction with soil properties and management practices for the very location were utilized to simulate the grass growth and water fluxes dynamics with DNDC. The modeled ET fluxes were compared with the eddy tower data. The results suggested that the seasonal patterns and magnitudes of simulated daily ET fluxes were basically in agreement with observations for the period of 2004–2005 (R2 = 0.68, P < 0.0001), both showing that the extreme drought in 2005 significantly decreased ET fluxes for the targeted grassland (P < 0.0001). Then, DNDC quantitatively separated T and E from ET, and found that extreme drought substantially decreased the annual transpiration and evapotranspiration by 57% and 30%, respectively. That shifted the ecosystem from water surplus to severe water deficit, which decreased gross primary productivity by about 73% and affected the ecosystem carbon sink or source function. The precipitation threshold for shifting water surplus and deficit function was found to be 20.8 mm per month in Leymus chinensis steppe ecosystem. The results suggested that extreme drought significantly changes the relative contribution of vegetation transpiration to ET fluxes, and that the effects of extreme drought are much stronger on vegetation transpiration than on soil evaporation.

参考文献/References:

1 Hao YB, Wang YF, Mei XR, Huang XZ, Cui XY, Zhou XQ, Niu HS. CO2, H2O and energy exchange of an Inner Mongolia steppe ecosystem during a dry and wet year [J]. Acta Oecol, 2008, 33: 133-143 2 王永芬, 莫兴国, 郝彦宾, 郭瑞萍, 黄祥忠, 王艳芬. 基于VIP模型对内蒙古草原蒸散季节和年际变化的模拟[J]. 植物生态学报, 2008, 32 (5): 1052-1060 [Wang YF, Mo XG, Hao YB, Guo RP, Huang XZ, Wang YF. Simulating seasonal and interannual variations of ecosystem evapotranspiration and its components in Inner Mongolia steppe with VIP model [J]. J Plant Ecol, 2008, 32 (5): 1052-1060] 3 Wilson KB, Baldocchi DD. Seasonal and interannual variability of energy flux over a broadleaved temperate deciduous forest in North America [J]. Agric For Meteorol, 2000, 100: 1-18 4 Gentine P, Entekhabi D, Chehbouni A, Boulet G, Duchemin B. Analysis of evaporative fraction diurnal behavior [J]. Agric For Meteorol, 2007, 143: 13-29 5 IPCC. Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change [M]. Cambridge, United Kingdom and New York, NY: Cambridge University Press, 2007 6 Kreyling J, Wenigmann M, Beierkuhnlein C, Jentsch A. Effects of extreme weather events on plant productivity and tissue die-back are modified by community composition [J]. Ecosystems, 2008, 11: 752-763 7 Smith MD. An ecological perspective on extreme climatic events: a synthetic definition and framework to guide future research [J]. J Ecol, 2011, 99: 656-663 8 Glaser B, Jentsch A, Kreyling J, Beierkuhnlein C. Soil-moisture change caused by experimental extreme summer drought is similar to natural inter-annual variation in a loamy sand in Central Europe [J]. J Plant Nutr Soil Sc, 2013, 176: 27-34 9 Kang XM, Hao YB, Li CS, Cui XY, Wang JZ, Rui YC, Niu HS, Wang YF. Modeling impacts of climate change on carbon dynamics in a steppe ecosystem in Inner Mongolia, China [J]. J Soil Sediment, 2011, 11: 562-576 10 张新时, 高琼, 杨莫安, 周广胜, 倪健, 王权. 中国东北样带的梯度分析及其预测[J]. 植物学报, 1997, 39 (9): 785-799 [Zhang XS, Gao Q, Yang MA, Zhou GS, Ni J, Wang Q. A gradient analysis and prediction on the Northeast China Transect (NECT) for global change study [J]. Acta Bot Sin, 1997, 39 (9): 785-799] 11 Hao YB, Wang YF, Huang XZ, Cui XY, Zhou XQ, Wang SP, Niu HS, Jiang GM. Seasonal and interannual variation in water vapor and energy exchange over a typical steppe in Inner Mongolia, China [J]. Agric For Meteorol, 2007, 146 (1-2): 57-69 12 Hao YB, Kang XM, Wu X, Cui XY, Liu WJ, Zhang H, Li Y, Wang YF, Xu ZH. Is frequency or amount of precipitation more important in controlling CO2 fluxes in a 30-year-old fenced and moderately grazed temperate steppe? [J]. Agric Ecosyst Environ, 2013, 171: 63-71 13 Jentsch A, Kreyling J, Elmer M, Gellesch E, Glaser B, Grant K, Hein R, Lara M, Mirzae H, Nadler SE. Climate extremes initiate ecosystem-regulating functions while maintaining productivity [J]. J Ecol, 2011, 99: 689-702 14 Royer PD, Cobb NS, Clifford MJ, Huang CY, Breshears DD, Adams HD, Villegas JC. Extreme climatic event-triggered overstorey vegetation loss increases understorey solar input regionally: primary and secondary ecological implications [J]. J Ecol, 2011, 99: 714-723 15 Kolb T, Dore S, Montes-Helu M. Extreme late-summer drought causes neutral annual carbon balance in southwestern ponderosa pine forests and grasslands [J]. Environ Res Lett, 2013, 8 (1): 015015 16 Sotta ED, Veldkamp E, Schwendenmann L, Guimar?es BR, Paix?o RK, Ruivo MLP, Lola da Costa AC, Meir P. Effects of an induced drought on soil carbon dioxide (CO2) efflux and soil CO2 production in an Eastern Amazonian rainforest, Brazil [J]. Global Change Biol, 2007, 13 (10): 2218-2229 17 Cox PM, Betts RA, Jones CD, Spall SA, Totterdell IJ. Acceleration of global warming due to carbon-cycle feedbacks in a coupled climate model [J]. Nature, 2000, 408 (6809): 184-187 18 Adams HD, Macalady AK, Breshears DD, Allen CD, Stephenson NL, Saleska SR, Huxman TE. Climate-induced tree mortality: earth system consequences [J]. Eos TransAm Geophys Union, 2010, 91 (17): 153 19 Sanaullah M, Chabbi A, Rumpel C Kuzyakov Y. Carbon allocation in grassland communities under drought stress followed by 14C pulse labeling [J]. Soil Biol Biochem, 2012, 55: 132-139 20 Hartley IP, Armstrong AF, Murthy R, Barron-Gafford G, Ineson P, Atkin OK. The dependence of respiration on photosynthetic substrate supply and temperature: integrating leaf, soil and ecosystem measurements [J]. Global Change Biol, 2006, 12 (10): 1954-1968 21 Leuning R, Cleugh HA, Zegelin SJ, Hughes D. Carbon and water fluxes over a temperate Eucalyptus forest and a tropical wet/dry savanna in Australia: measurements and comparison with MODIS remote sensing estimates [J]. Agric For Meteorol, 2005, 129 (3-4): 151-173 22 Baldocchi D, Falge E, Gu LH, Olson R, Hollinger D, Running S, Anthoni P, Bernhofer C, Davis K, Evans R, Fuentes J, Goldstein A, Katul G, Law B, Lee XH, Malhi Y, Meyers T, Munger W, Oechel W, U KTP, Pilegaard K, Schmid HP, Valentini R, Verma S, Vesala T, Wilson K, Wofsy S. FLUXNET: A new tool to study the temporal and spatial variability of ecosystem-scale carbon dioxide, water vapor, and energy flux densities [J]. B Am Meteorol Soc, 2001, 82 (11): 2415-2434 23 Li C, Narayanan V, Harriss RC. Model estimates of nitrous oxide emissions from agricultural lands in the United States [J]. Global Biogeochem Cy, 1996, 10 (2): 297-306 24 Stange F, Butterbach-Bahl K, Papen H, Zechmeister-Boltenstern S, Li CS, Aber J. A process-oriented model of N2O and NO emissions from forest soils 2. Sensitivity analysis and validation [J]. J Geophys Res, 2000, 105 (D4): 4385-4398 25 Xu-Ri, Wang YS, Zheng XH, Ji BM, Wang MX. A comparison between measured and modeled N2O emissions from Inner Mongolian semi-arid grassland [J]. Plant Soil, 2003, 255 (2): 513-528 26 Kang XM, Hao YB, Cui XY, Chen H, Li CS, Rui YC, Tian JQ, Kardol P, Zhong L, Wang JZ, Wang YF. Effects of grazing on CO2 balance in a semi-arid steppe: field observations and modeling [J]. J Soil Sediment, 2013, 13: 1012-1023 27 Heddinghaus TR, Sabol P. A review of the palmer drought severity index and where do we go from here? Proceedings of the Seventh Conference on Applied Climatology [C]. Bos-ton, MA: American Meteorological Society, 1991: 246 28 郝彦宾, 王艳芬, 崔骁勇. 干旱胁迫降低了内蒙古羊草草原的碳累积[J]. 植物生态学报, 2010, 34 (8): 898-906 [Hao YB, Wang YF, Cui XY. Drought stress reduces the carbon accumulation of the Leymus chinensis steppe in Inner Mongolia, China [J]. Acta Phytoecol Sin, 2010, 34 (8): 898-906] 29 Webb EK, Pearman GI, Leuning R. Correction of flux measurements for density effects due to heat and water-vapor transfer [J]. Q J Roy Meteorol Soc, 1980, 106 (447): 85-100 30 Falge E, Baldocchi D, Olson R, Anthoni P, Aubinet M, Bernhofer C, Burba G, Ceulemans R, Clement R, Dolman H, Granier A, Gross P, Grunwald T, Hollinger D, Jensen NO, Katul G, Keronen P, Kowalski A, Lai CT, Law BE, Meyers T, Moncrieff H, Moors E, Munger JW, Pilegaard K, Rannik U, Rebmann C, Suyker A, Tenhunen J, Tu K, Verma S, Vesala T, Wilson K, Wofsy S. Gap filling strategies for defensible annual sums of net ecosystem exchange [J]. Agric For Meteorol, 2001, 107 (1): 43-69 31 Li CS, Frolking S, Frolking TA. A model of nitrous-oxide evolution from soil driven by rainfall events: 1. Model structure and sensitivity [J]. J Geophys Res, 1992a, 97: 9759-9776 32 Li CS, Frolking S, Frolking TAA model of nitrous-oxide evolution from soil driven by rainfall events: 2. model applications [J]. J Geophys Res, 1992b, 97: 9777-9783 33 Hsieh CI, Leahy P, Kiely G, Li CS. The effect of future climate perturbations on N2O emissions from a fertilized humid grassland [J]. Nutr Cycl Agroecosys, ,2005, 73: 15-23 34 Kesik M, Bruggemann N, Forkel R, Kiese R, Knoche R, Li CS, Seufert G, Simpson D, Butterbach-Bahl K. Future scenarios of N2O and NO emissions from European forest soils [J]. J Geophys Res, 2006, 111 (G2): 527-540 35 Li CS, Aber J, Stange F, Butterbach-Bahl K, Papen H. A process–oriented model of N2O and NO emissions from forest soils: 1. Model development [J]. J Geophys Res, 2000, 105: 4369-4384 36 Li CS. Selenium deficiency and endemic heart failure in China: A case study of biogeochemistry for human health [J]. Ambio, 2007, 36: 90-93 37 盖煜, 邓晓东, 南志刚. 内蒙古干草原羊草群落水分平衡及水分利用对策[J]. 内蒙古气象, 2004 (1): 26-30 38 宋炳煜. 草原区不同植物群落蒸发蒸腾的研究[J]. 植物生态学报, 1995, 19 (4): 319-328 [Song BY. Studies on evapotranspiration from different plant communities in steppe region of Inner Mongolia [J]. Acta Phytoecol Sin, 1995, 19 (4): 319-328] 39 Hussaina MZ, Grünwaldb T, Tenhunena JD, Li c YL, Mirzaea,d H, Bernhoferb C, Otienoa D, Dinha NQ, Schmidta,e M, Wartingera M, Owena K. Summer drought influence on CO2 and water fluxes of extensively managed grassland in Germany [J]. Agric Ecosyst Environ, 2011, 141: 67-76 40 Zhang SC, Wen XF, Wang JL, Yu GR, Sun XM. The use of stable isotopes to partition evapotranspiration fluxes into evaporation and transpiration [J]. Acta Ecol Sin, 2010, 30 (4): 201-209 41 Nouvellon Y, Rambal S, Seen DL, Moran MS, Lhomme JP, Bégué A, Chehbouni AG, KerrY. Modelling of daily fluxes of water and carbon from shortgrass steppes [J]. Agr Forest Meteorol, 2000, 100: 137-153 42 Ferretti DF, Pendall E, Morgan JA, Nelson JA, Lecain D, Mosier AR. Partitioning evapotranspiration fluxes from a Colorado grassland using stable isotopes: Seasonal variations and ecosystem implications of elevated atmospheric CO2 [J]. Plant Soil, 2003, 254: 291-303 43 Ciais P, Reichstein M, Viovy N, Granier A, Ogée J, Allard V, Aubinet M, Buchmann N, Bernhofer C, Carrara A. Europe-wide reduction in primary productivity caused by the heat and drought in 2003 [J]. Nature, 2005, 437: 529-533 44 Gitlin AR, Sthultz CM, Bowker MA, Stumpf S, Paxton KL, Kennedy K, Munoz A, Bailey JK, Whitham TG. Mortality gradients within and among dominant plant populations as barometers of ecosystem change during extreme drought [J]. Conserv Biol, 2006, 20: 1477-1486 45 Davis SD, Ewers FW, Sperry JS, Portwood KA, Crocker MC, Adams GC. Shoot dieback during prolonged drought in Ceanothus (Rhamnaceae) chaparral of California: a possible case of hydraulic failure [J]. Am J Bot, 2002, 89: 820-828 46 Bernal M, Estiarte M, Pe?uelas J. Drought advances spring growth phenology of the Mediterranean shrub Erica multiflora [J]. Plant Biol, 2011, 13: 252-257 47 牟成香, 孙庚, 罗鹏, 王志远, 罗光荣. 青藏高原高寒草甸植物开花物候对极端干旱的响应[J]. 应用与环境生物学报, 2013, 19 (2): 272-279 [Mou CX, Sun G, Luo P, Wang ZY, Luo RG. Flowering responses of alpine meadow plant in the Qinghai-Tibetan Plateau to extreme drought imposed in different periods [J]. Chin J Appl Environ Biol, 2013, 19 (2): 272-279] 48 Sala OE, Lauenroth WK. Small rainfall events: an ecological role in semiarid regions [J]. Oecologia, 1982, 53: 301-304 49 Knapp A, Briggs J, Koelliker J. Frequency and extent of water limitation to primary production in a mesic temperate grassland [J]. Ecosystems, 2001, 4 (1): 19-28 50 牛海山, 旭日, 宋炳煜. 羊草种群的水分利用动态[J]. 草地学报, 2000, 8: 226-232 [Niu HS, Xu R, Song BY. Water use dynamic of Leymus chinensis population [J]. Acta Agrestia Sin, 2000, 8: 226-232] 51 蔺万煌. 干旱胁迫下5种三叶草的生长和生理反应[J]. 应用与环境生物学报, 2011, 17 (4): 580-584 [Lin WH. Growth of five species of Trifolium and their physiological responses to drought stress [J]. Chin J Appl Environ Biol, 2011, 17 (4): 580-584] 52 Miranda AC, Miranda HS, Lloyd J, Grace J, Francey RJ, Mcintyre JA, Meir P, Riggan P, Lockwood R, Brass J. Fluxes of carbon, water and energy over Brazilian cerrado: an analysis using eddy covariance and stable isotopes [J]. Plant Cell Environ, 1997, 20: 315-328 53 Welker JM, Brown KB, Fahnestock JT. CO2 flux in Arctic and alpine dry tundra: Comparative field responses under ambient and experimentally warmed conditions [J]. Arct Antarct Alp Res, 1999, 31: 272-277 54 Dong G, Guo J, Chen J, Sun G, Gao S, Hu LJ, Wang YL. Effects of spring drought on carbon sequestration, evapotranspiration and water use efficiency in the Songnen meadow steppe in northeast China [J]. Ecohydrology, 2011, 4 (2): 211-224 55 Bowling DR, Bethers-Marchetti S, Lunch CK, Grote EE, Belnap J. Carbon, water, and energy fluxes in a semiarid cold desert grassland during and following multiyear drought [J]. J Geophys Res (2005–2012), 2010, 115 (G4): 2393-2401 56 Austin AT, Yahdjian L, Stark JM, Belnap J, Porporato A, Norton U, Ravetta DA, Schaeffer SM. Water pulses and biogeochemical cycles in arid and semiarid ecosystems [J]. Oecologia, 2004, 141: 221-235 57 张彬, 朱建军, 刘华民, 潘庆民. 极端降水和极端干旱事件对草原生态系统的影响[J]. 植物生态学报, 2014, 38 (9): 1008-1018 [Zhang B, Zhu JJ, Liu HM, Pan QM. Effects of extreme rainfall and drought events on grassland ecosystems [J]. Acta Phytoecol Sin, 2014, 38 (9): 1008-1018] 58 周广胜, 张新时. 全球气候变化的中国自然植被的净第一性生产力研究[J]. 植物生态学报, 1996, 20 (1): 11-19 [Zhou GS, Zhang XS. Study on NPP of natural vegetation in China under global climate change [J]. Acta Phytoecol Sin, 1996, 20 (1): 11-19]

相似文献/References:

[1]牟成香,孙庚,罗鹏,等.青藏高原高寒草甸植物开花物候对极端干旱的响应[J].应用与环境生物学报,2013,19(02):272.[doi:10.3724/SP.J.1145.2013.00272]
 MOU Chengxiang,SUN Geng,LUO Peng,et al.Flowering Responses of Alpine Meadow Plant in the Qinghai-Tibetan Plateau to Extreme Drought Imposed in Different Periods[J].Chinese Journal of Applied & Environmental Biology,2013,19(04):272.[doi:10.3724/SP.J.1145.2013.00272]
[2]郝广,闫勇智,李阳,等.不同刈割频次对呼伦贝尔羊草草原土壤碳氮变化的影响[J].应用与环境生物学报,2018,24(02):195.[doi:10.19675/j.cnki.1006-687x.2017.05001]
 HAO Guang,YAN Yongzhi,LI Yang,et al.Effects of different mowing frequencies on soil carbon and nitrogen changes in Leymus chinensis Steppe of Hulun Buir[J].Chinese Journal of Applied & Environmental Biology,2018,24(04):195.[doi:10.19675/j.cnki.1006-687x.2017.05001]

备注/Memo

备注/Memo:
国家自然科学基金项目(31300417)、中央级公益性科研院所基本科研业务费专项资金(CAFYBB2014QB026)和国家自然科学基金项目(31170459)资助 Supported by the National Natural Science Foundation of China (31300417), the National Nonprofit Institute Research Grant of CAFINT (CAFYBB2014QB026) and the National Natural Science Foundation of China (31170459)
更新日期/Last Update: 2015-08-25