|本期目录/Table of Contents|

[1]张俊芳,唐晓凤,李欲翔,等.番茄SIZ1-like1基因的克隆与功能[J].应用与环境生物学报,2015,21(03):406-412.[doi:10.3724/SP.J.1145.2014.12016]
 ZHANG Junfang,TANG Xiaofeng,LI Yuxiang,et al.Cloning and function study of tomato SUMO E3 ligase SIZ1-like1 gene[J].Chinese Journal of Applied & Environmental Biology,2015,21(03):406-412.[doi:10.3724/SP.J.1145.2014.12016]
点击复制

番茄SIZ1-like1基因的克隆与功能()
分享到:

《应用与环境生物学报》[ISSN:1006-687X/CN:51-1482/Q]

卷:
21卷
期数:
2015年03期
页码:
406-412
栏目:
研究论文
出版日期:
2015-06-25

文章信息/Info

Title:
Cloning and function study of tomato SUMO E3 ligase SIZ1-like1 gene
作者:
张俊芳唐晓凤李欲翔邓 恒高兰阳刘永胜
四川大学生命科学学院,水力学与山区河流开发保护国家重点实验室 成都 610064
Author(s):
ZHANG Junfang TANG Xiaofeng LI Yuxiang DENG Heng GAO Lanyang LIU Yongsheng
State Key Laboratory of Hydraulics and Mountain River Engineering, College of Life Sciences, Sichuan University, Chengdu 610064, China
关键词:
番茄SIZ1-like1基因克隆抗旱亚细胞定位正调控
Keywords:
tomato SIZ1-like1 gene clone drought tolerance subcellular localizationpositive regulation
分类号:
Q78 : S641.203.4
DOI:
10.3724/SP.J.1145.2014.12016
文献标志码:
A
摘要:
SUMO(Small ubiquitin-related modifier)化修饰是植物体内一种重要的蛋白质功能调节方式. 它调控植物细胞中蛋白的降解与定位,植物抗性及激素调节等. SIZ1是SUMO的E3连接酶并在SUMO化中起重要作用. 为了解SIZ1基因在番茄中的功能,成功克隆番茄(Solanum lycopersicum)SIZ1基因(SIZ1-like1)并构建番茄SIZ1-like1RNA干涉和过表达载体后,通过农杆菌介导转入野生型番茄,成功获得6个独立的转基因阳性植株. 荧光定量PCR(Real-time PCR)分析野生型番茄中SIZ1-like1基因的组织表达特异性,发现SIZ1-like1在植物的各个组织中都有表达. 构建SIZ1-like1黄色荧光蛋白融合表达载体,通过对SIZ1-like1融合黄色荧光蛋白转基因番茄的根尖进行荧光显微观察,证实番茄SIZ1蛋白定位于细胞核. 干旱胁迫实验分析显示,过表达转基因植株抗旱性强于野生型,且脯氨酸含量是野生型的3倍左右,而RNAi植株抗旱能力则较弱. 因此SIZ1基因对番茄抗旱起到了正调控作用.
Abstract:
Sumoylation is an important way to regulate post-translation of proteins in plant cells, including protein degradation and location, responses to environmental stresses and hormones. SIZ1 is a SUMO (small ubiquitin-related modifier) E3 ligase that plays a vital role in sumoylation. In order to illustrate the function of SIZ1 gene in tomato, this research cloned SIZ1 gene from tomato, constructed SIZ1-like1-PBI121 over-expression and SIZ1-like1-pSKint RNA interference fusion expression vectors, and transformed them into wild type tomato using Agrobacterium-mediated transformation to successfully obtain six positive transgenic plants. The Real-Time PCR experiment indicated that SIZ1-like1 expressed in all growth stages of tomato. SIZ1-like1-YFP fusion expression vector was constructed and transformed into tomato. The results of microscopic observation revealed that SIZ1-like1 was located in the nuclei. Drought stress indicated that transgenic plants with overexpressed SIZ1-like1 had stronger tolerance compared to the wild type, with proline content about threefold of the latter; however, the SIZ1-like1RNA interference plants had less tolerance. These results demonstrated the positive regulation of SIZ1 gene in tomato.

参考文献/References:

1 Zhang S, Qi Y, Liu M, Yang C. SUMO E3 Ligase AtMMS21 regulates drought tolerance in Arabidopsis thaliana [J]. Plant Biol, 2013, 55 (1): 83-95
2 Muller S, Hoege C, Pyrowolakis G, Jentsch S. SUMO ubiquitin’s mysterious cousin [J]. Nat Rev Mol Cell Biol , 2001, 2: 202-210
3 Novatchkova M, Budhiraja R, Coupland G. SUMO conjugation in plants [J]. Planta, 2004, 220: 1-8
4 徐庞连, 曾棉炜, 黄丽霞, 阳成伟. 植物SUMO化修饰及其生物学功能[J]. 植物学通报, 2008, 25: 608-615
5 Johnson ES, Gupta AA. An E3- like factor that promotes SUMO conjugation to the yeast septins [J]. Cell, 2001, 106: 735- 744
6 Huang LX, Yang SG, Zhang SC. The Arabidopsis SUMO E3 ligase AtMMS21, a homologue of NSE2/MMS21, regulates cell proliferation in the root [J]. Plant J, 2009, 60: 666-678
7 Shida T, Fujiwara S, Miura K. SUMO E3 ligase HIGH PLOIDY2 regulates endocycle onset and meristem maintenance in Arabidopsis [J]. Plant Cell, 2009, 21: 2284-2297
8 Ling Y, Zhang C, Chen T, Hao H, Liu P. Mutation in SUMO E3 ligase SIZ1 disrupts the mature female gametophyte in Arabidopsis [J]. PLoS ONE, 2012, 7 (1): e29470
9 Jin JB, Jin YH, Lee J. The SUMO E3 ligase AtS1Z1 regulates flowering by controlling a salicylic acid-mediated floral promotion pathway and through affects on FLC chromatin structure [J]. Plant J, 2008, 53: 530-540
10 Kurepa J, Walker JM, Smalle J. The small ubiquitin-like modifier (SUMO) protein modification system in Arabidopsis – Accumulation of SUMO1 and -2 conjugates is increased by stress [J]. J Biol Chem, 2003, 278: 6862-6872
11 Lee JY, Nam J, Park HC, Na G. Salicylic acid-mediated innate immunity in Arabidopsis is regulated by SIZ1 SUMO E3 ligase [J]. Plant J, 2007, 49: 79-90
12 Miura K, Jin JB, Lee J. SIZ1-mediated sumoylation of ICE1 controls CBF3/DREB1A expression and freezing tolerance in Arabidopsis [J]. Plant Cell, 2007, 19: 1403-1414
13 Yoo CY, Miura K, Jin JB. SIZ1 (Small ubiquitin-like modifier) E3 ligase facilitates basal thermotolerance in Arabidopsis independent of salicylic acid [J]. Plant Physiol, 2006, 142:1548-1558
14 Catala R, Ouyang J, Abreu IA. The Arabidopsis E3 SUMO ligase SIZ1 regulates plant growth and drought responses [J]. Plant Cell, 2007, 19: 2952-2966
15 Zhu JK. Salt and drought stress signal transduction in plants [J]. Annu Rev Plant Biol, 2002, 53: 247-273
16 Bohnert HJ, Gong Q, Li P. Unraveling abiotic stress tolerance mechanism: getting genomics going [J]. Curr Opin Plant Biol, 2006, 9: 180-188
17 Miura K, Lee J, Jin JB. Sumoylation of ABI5 by the Arabidopsis SUMO E3 ligase SIZ1 negatively regulates abscisic acid signaling [J]. Proc Natl Acad Sci USA, 2009, 106: 5418-5423
18 Zheng Y, Schumaker KS, Guo Y. Sumoylation of transcription factor MYB30 by the small ubiquitin-like modifier E3 ligase SIZ1 mediates abscisic acid response in Arabidopsis thaliana [J]. Proc Natl Acad Sci USA, 2012, 109: 12822-12827
19 刘继恺, 高永峰, 牛向丽. 番茄HP1和HP2基因RNA共干涉载体的构建及遗传转化[J] . 应用与环境生物学报, 2009, 15 (5): 591-595 [Liu JK, Gao YF, Niu XL, Liu YS. Construction and transformation of Co-RNAi vector of tomato HP1 and HP2 genes [J]. Chin J Appl Environ Biol, 2009, 15 (5): 591-59]
20 Miura K, Hasegawa PM. Sumoylation and other ubiquitin-like posttransl-ational modifications in plants [J]. Trends Cell Biol, 2010, 20: 223-232
21 Miura K, Rus A, Sharkhuu A, Yokoi S, Karthikeyan AS. The Arabidopsis SUMO E3 ligase SIZ1 controls phosphate deficiency responses [J]. Proc Natl Acad Sci USA, 2005, 102: 7760-7765
22 张霞, 唐维, 刘嘉,刘永胜. 过量表达水稻OsP5CS1和OsP5CS2基因提高烟草脯氨酸的生物合成及其非生物胁迫抗性[J].应用与环境生物学报, 2014, 20 (4): 717-722 [Zhang X, Tang W, Liu J & Liu YS. Co-expression of rice OsP5CS1 and OsP5CS2 genes in transgenic tobacco resulted in elevated proline biosynthesis and enhanced abiotic stress tolerance [J]. Chin J Appl Environ Biol, 2014, 20 (4): 717-722]
23 Bates LS, Waldren RP, Teare ID. Rapid determination of free proline content for water-stress studies [J]. Plant Soil, 1973, 39 (1): 205-207
24 陈泉, 施蕴渝. 小泛素相关修饰物SUMO研究进展[J]. 生命科学, 2004, 16: 1-6

相似文献/References:

[1]葛体达,黄丹枫** 芦波 唐东梅 宋世威.无机氮和有机氮对水培番茄幼苗碳水化合物积累及氮素吸收的影响*[J].应用与环境生物学报,2008,14(05):604.
[2]张春梅,邹志荣,张志新,等.外源亚精胺对模拟干旱胁迫下番茄幼苗活性氧水平和抗氧化系统的影响[J].应用与环境生物学报,2009,15(03):301.[doi:10.3724/SP.J.1145.2009.00301]
 ZHANG Chunmei,ZOU Zhirong,ZHANG Zhixin,et al.Effects of Exogenous Spermidine on Reactive Oxygen Levels and Antioxidative System of Tomato Seedling under Polyethlene Glycol Stress[J].Chinese Journal of Applied & Environmental Biology,2009,15(03):301.[doi:10.3724/SP.J.1145.2009.00301]
[3]刘继恺,高永峰,牛向丽,等.番茄HP1和HP2基因RNA共干涉载体的构建及遗传转化[J].应用与环境生物学报,2009,15(05):591.[doi:10.3724/SP.J.1145.2009.00591]
 LIU Jikai,GAO Yongfeng,NIU Xiangli & LIU Yongsheng.Construction and Transformation of Co-RNAi Vector of Tomato HP1 and HP2 Genes[J].Chinese Journal of Applied & Environmental Biology,2009,15(03):591.[doi:10.3724/SP.J.1145.2009.00591]
[4]崔向超,胡君利,林先贵,等.丛枝菌根真菌与复硝酚钠在番茄育苗中的应用[J].应用与环境生物学报,2012,18(05):843.[doi:10.3724/SP.J.1145.2012.00843]
 CUI Xiangchao,HU Junli,LIN Xiangui,et al.Application of Arbuscular Mycorrhizal Fungi and Compound Sodium Nitrophenolate in Tomato Seedling Growth[J].Chinese Journal of Applied & Environmental Biology,2012,18(03):843.[doi:10.3724/SP.J.1145.2012.00843]
[5]张治国,高永峰,苗敏,等.番茄SlWD1基因的克隆及SlWD1与DDB1的相互作用[J].应用与环境生物学报,2013,19(04):623.[doi:10.3724/SP.J.1145.2013.00623]
 ZHANG Zhiguo,GAO Yongfeng,MIAO Min,et al.Cloning of SlWD1 Gene and Interaction of SlWD1 with DDB1 in Tomato[J].Chinese Journal of Applied & Environmental Biology,2013,19(03):623.[doi:10.3724/SP.J.1145.2013.00623]
[6]朱芸晔,薛冰,王安全,等.番茄bZIP转录因子家族的生物信息学分析[J].应用与环境生物学报,2014,20(05):767.[doi:10.3724/SP.J.1145.2014.01033]
 ZHU Yunye,XUE Bing,WANG Anquan,et al.Comprehensive bioinformatic analysis of bZIP transcription factors in Solanum lycopersicum[J].Chinese Journal of Applied & Environmental Biology,2014,20(03):767.[doi:10.3724/SP.J.1145.2014.01033]
[7]杨述章,高兰阳,孙晓春,等.过量表达SlWD6基因增强番茄抗旱和耐盐功能[J].应用与环境生物学报,2015,21(03):413.[doi:10.3724/SP.J.1145.2015.01006]
 YANG Shuzhang,GAO Lanyang,SUN Xiaochun,et al.Over-expressing SlWD6 gene to improve drought and salt tolerance of tomato[J].Chinese Journal of Applied & Environmental Biology,2015,21(03):413.[doi:10.3724/SP.J.1145.2015.01006]
[8]郑娜,柯林峰,杨景艳,等.来源于污染土壤的植物根际细菌对番茄幼苗的促生与盐耐受机制[J].应用与环境生物学报,2018,24(01):47.[doi:10.19675/j.cnki.1006-687x.2017.03031]
 ZHENG Na,KE Linfeng,YANG Jingyan,et al.Growth improvement and salt tolerance mechanisms of tomato seedlings mediated by plant growth-promoting rhizobacteria from contaminated soils[J].Chinese Journal of Applied & Environmental Biology,2018,24(03):47.[doi:10.19675/j.cnki.1006-687x.2017.03031]
[9]孙德智,韩晓日,彭靖,等.外源NO和水杨酸对盐胁迫下番茄幼苗光合机构的保护作用[J].应用与环境生物学报,2018,24(03):457.[doi:10.19675/j.cnki.1006-687x.2017.08019]
 SUN Dezhi**,HAN Xiaori,PENG Jing,et al.Protective effect of exogenous nitric oxide and salicylic acid on the photosynthetic apparatus of tomato seedling leaves under NaCl stress[J].Chinese Journal of Applied & Environmental Biology,2018,24(03):457.[doi:10.19675/j.cnki.1006-687x.2017.08019]

备注/Memo

备注/Memo:
国家自然科学基金项目(90717110)、国家高技术研究发展计划(863计划,2007A A10Z122)和国家杰出青年科学基金项目(30825030)资助 Supported by the National Natural Science Foundation of China ( 90717110), the National High-tech Research and Development Program of China (863 Program, 2007AA10Z122), and the National Science Fund of China for Distinguished Young Scholars (30825030)
更新日期/Last Update: 2015-06-23