|本期目录/Table of Contents|

[1]周娟,赵平,朱丽薇,等.荷木(Schima superba)水力导度的干湿季变化及个体差异[J].应用与环境生物学报,2015,21(02):333-340.[doi:10.3724/SP.J.1145.2014.10011]
 ZHOU Juan,ZHAO Ping,ZHU Liwei,et al.Wet-dry seasonal patterns and inter-tree variation of hydraulic conductance of Schima superba[J].Chinese Journal of Applied & Environmental Biology,2015,21(02):333-340.[doi:10.3724/SP.J.1145.2014.10011]
点击复制

荷木(Schima superba)水力导度的干湿季变化及个体差异()
分享到:

《应用与环境生物学报》[ISSN:1006-687X/CN:51-1482/Q]

卷:
21卷
期数:
2015年02期
页码:
333-340
栏目:
研究论文
出版日期:
2015-04-25

文章信息/Info

Title:
Wet-dry seasonal patterns and inter-tree variation of hydraulic conductance of Schima superba
作者:
周娟 赵平 朱丽薇 牛俊峰 赵秀华 张振振 孙振伟
1中国科学院华南植物园,中国科学院退化生态系统植被恢复与管理重点实验室 广州 510650 2中国科学院大学 北京 100049
Author(s):
ZHOU Juan ZHAO Ping ZHU Liwei NIU Junfeng ZHAO Xiuhua ZHANG Zhenzhen SUN Zhenwei
1Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China 2University of Chinese Academy of Sciences, Beijing 100049, China
关键词:
水力导度荷木树形特征Granier热消散探针液流密度
Keywords:
hydraulic conductance Schima superba tree morphology Granier’s thermal dissipation probe sap flow
分类号:
Q945.79
DOI:
10.3724/SP.J.1145.2014.10011
文献标志码:
A
摘要:
通过对不同个体水力导度(KL)的研究,揭示水力导度在树木水分利用中的关键作用,可为深入研究森林水分循环提供理论依据. 采用热消散探针液流测定系统连续监测广州地区6棵不同大小荷木(Schima superba)样树的液流密度(JS),结合树木的叶片水势(ΨL)、土壤湿度、树高、边材面积(AS)、冠幅等参数,分析整树水力导度的日变化和干湿季变化,揭示不同大小样树水力导度的变化规律. 结果显示:不同胸径大小的6棵样树液流密度差别明显,液流密度最大值未出现在胸径最大的样树中,而是在胸径略小的树木中. 通过测定6棵样树的液流密度值可以进一步求算出样树的整树水力导度,总体上讲,6棵树的日均水力导度表现出明显的起伏波动;其中干季水力导度(0.017 g m-2 s-1 MPa-1)略低于湿季(0.019 g m-2 s-1 MPa-1),但差异并不明显. 样树土壤/叶片水势差与平均液流密度显著相关(P < 0.001),而样树树形特征和水力导度之间关系表现为水力导度与树高呈现明显相关性(P = 0.016),与胸径、冠幅相关性均不显著. 上述结果表明,荷木水力导度表现出明显的日变化,其大小在一定程度上受到树形指标的影响.
Abstract:
Our study aimed at revealing the diurnal and seasonal patterns of hydraulic conductance (KL) and the relationship between KL and individual characteristics, in order to understand the roles of KL in individual tree and to offer a theoretical basis for further researches on water circulation in forests. Sap flux densities (JS) in six trees of different size were continually monitored using Granier’s thermal dissipation probes (TDP) in a Schima superba plantation in southern China. Combined with the measurements of leaf water potential (ΨL), soil moisture, tree height, sapwood area (AS) and crown size, we analyzed the daily variation and seasonal changes of the KL among individual trees. The results showed significant difference in the diurnal course of JS among individuals. The maximum JS was observed in individual with the second largest (rather than the largest) diameter at breast height (DBH). Determined with the measured JS and ΨL, KL of individual trees all showed fluctuations in a day, slightly higher in wet season (0.017 g m-2 s-1 MPa-1) than in dry season (0.019 g m-2 s-1 MPa-1). Besides, JS were significantly correlated with soil-leaf water potential gradient (ΨS-L) in both wet and dry seasons (P < 0.001). Partial regression analysis showed that KL was significantly and positively correlated with tree height (P = 0.016), but not with DBH or crown size. Our results indicated the significant diurnal patterns in KL that is to some extent closely related to individual characteristics.

参考文献/References:

1 Tyree MT, Sperry JS. Vulnerability of xylem to cavitation and embolism [J]. Annu Rev Plant Biol, 1989, 40 (1): 19-36
2 王继强. 北方城市绿化树种水力结构与水分生理生态特征研究[D]. 北京: 北京林业大学, 2005 [Wang JQ. Studies on hydraulic architecture and characteristics of water eco-physiology in northern urban greening tree species [D]. Beijing: Beijing Forestry University, 2005]
3 Hubbard RM, Bond BJ, Ryan MG. Evidence that hydraulic conductance limits photosynthesis in old Pinus ponderosa trees [J]. Tree Physiol, 1999, 19 (3): 165-172
4 Tyree MT, Velez V, Dalling JW. Growth dynamics of root and shoot hydraulic conductance in seedlings of five neotropical tree species: scaling to show possible adaptation to differing light regimes [J]. Oecologia, 1998, 114 (3): 293-298
5 Irvine J, Perks MP, Magnani F, Grace J. The response of Pinus sylvestris to drought: stomatal control of transpiration and hydraulic conductance [J]. Tree physiol, 1998, 18 (6): 393-402
6 Cochard H, Breda N, Granier A. Whole tree hydraulic conductance and water loss regulation in Quercus during drought: evidence for stomatal control of embolism [J]. Ann For Sci, 1996, 53 (2-3): 197-206
7 Sellin A, ?unapuu E, Kaurilind E, Alber M. Size-dependent variability of leaf and shoot hydraulic conductance in silver birch [J]. Trees, 2012, 26 (3): 821-831
8 Bréda N, Huc R, Granier A, Dreyer E. Temperate forest trees and stands under severe drought: a review of ecophysiological responses, adaptation processes and long-term consequences [J]. Ann For Sci, 2006, 63 (6): 625-644
9 Yang S, Tyree MT. Hydraulic architecture of Acer saccharum and A.rubrum: comparison of branches to whole trees and the contribution of leaves to hydraulic resistance [J]. J Exp Bot, 1994, 45 (2): 179-186
10 张振振, 赵平, 倪广艳, 朱丽薇, 赵秀华, 赵培强, 牛俊峰. 华南丘陵植被恢复先锋树种木荷与马占相思的水分利用[J]. 应用生态学报, 2014, 25 (4): 931-939 [Zhang ZZ, Zhao P, Ni GY, Zhu LW, Zhao XH, Zhao PQ, Niu JF. Water use of re-vegetation pioneer tree species Schima superba and Acacia mangium in hilly land of South China [J]. Chin J Appl Ecol, 2014, 25 (4): 931-939]
11 马玲, 赵平, 饶兴权, 蔡锡安, 曾小平. 乔木蒸腾作用的主要测定方法[J]. 生态学杂志, 2005, 24 (1): 88-96 [Ma L, Zhao P, Rao XQ, Cai XA, Zeng XP. Main determination methods of tree transpiration [J]. Chin J Ecol, 2005, 24 (1): 88-96]
12 朱丽薇, 赵平, 倪广艳, 蔡锡安, 曾小平, 邹绿柳, 梅婷婷, 于孟好. 荷木树干CO2释放通量的个体间差异及树干液流的效应[J]. 应用与环境生物学报, 2011, 17 (4): 447-452 [Zhu LW, Zhao P, Ni GY, Cai XA, Zeng XP, Zou LL, Mei TT, Yu MH. Differences of stem CO2 efflux among individual trees of Schima superba and effects of sap flow [J]. Chin J Appl Environ Biol, 2011, 17 (4): 447-452]
13 周翠鸣, 赵平, 倪广艳, 朱丽薇, 王权, 梅婷婷, 张军彦,蔡锡安. 基于树干液流和土壤-叶片水势梯度分析荷木干湿季整树水分利用特征[J]. 生态学杂志, 2011, 30 (12): 2659-2666 [Zhou CM, Zhao P, Ni GY, Zhu LW, Wang Q, Mei TT, Zhang JY, Cai XA [J]. Chin J Ecol, 2011, 30 (12): 2659-2666]
14 梅婷婷, 王传宽, 赵平, 蔡锡安, 刘晓静, 张全智. 木荷树干液流的密度特征[J]. 林业科学, 2010, 46 (1): 40-47 [Mei TT, Wang CK, Zhao P, Cai XA, Liu XJ, Zhang QZ. Dynamics of trunk sap flux density of Schima superba [J]. Chin For Sci, 2010, 46 (1): 40-47]
15 Phillips NR, Oren R, Zimmermann R. Radial patterns of xylem sap flow in non-, diffuse- and ring- porous tree species [J]. Plant Cell Environ, 1996, 19 (8): 983-990
16 Reich PB, Hinckley TM. Influence of pre-dawn water potential and soil-to-leaf hydraulic conductance on maximum daily leaf diffusive conductance in two oak species [J]. Funct Ecol, 1989, 3:719-726
17 黄玉清, 张中峰, 何成新, 赵平, 袁维园, 焦继飞, 尤业明. 岩溶区青冈栎整树蒸腾的季节变化[J]. 应用生态学报, 2009, 20 (2): 256-264 [Huang YQ, Zhang ZF, He CX, Zhao P, Yuan WY, Jiao JF, You YM. Seasonal variation of Cyclobalanopsis glauca whole-tree transpiration in karst region [J]. Chin J Appl Ecol, 2009, 20 (2): 256-264]
18 赵平, 饶兴权, 马玲, 蔡锡安, 曾小平. 马占相思树干液流密度和整树蒸腾的个体差异[J]. 生态学报, 2006, 26 (12): 4050-4058 [Zhao P, Rao XQ, Ma L, Cai XA, Zeng XP. The variations of sap flux density and whole-tree transpiration across indibiduals of Acacia mangium [J]. Acta Ecol Sin, 2006, 26 (12): 4050-4058]
19 Oren R, Phillips N, Ewers BE, Pataki DE, Megonigal JP. Sap-flux-scaled transpiration responses to light, vapor pressure deficit, and leaf area reduction in a flooded Taxodium distichum forest [J]. Tree Physiol, 1999, 19 (6): 337-347
20 Jiménez MS, Cermák J, Kucera J, Morales D. Laurel forests in Tenerife, Canary Islands: the annual course of sap flow in Laurus trees and stand [J]. J Hydrol, 1996, 183 (3): 307-321
21 熊伟, 王彦辉, 于澎涛, 刘海龙, 徐丽宏, 时忠杰, 莫非. 华北落叶松树干液流的个体差异和林分蒸腾估算的尺度上推[J]. 林业科学, 2008, 44 (1): 35-40 [Xiong W, Wang YH, Yu PT, Liu HL, Xu LH, Shi ZJ, Mo F. Variation of sap flow among individual trees and scaling-up for estimation of transpiration of Larix principis-rupprechtii stand [J]. Chin For Sci, 2008, 44 (1): 35-40]
22 张彦群, 王传宽. 北方和温带森林生态系统的蒸腾耗水[J]. 应用与环境生物学报, 2008, 14 (6): 838-845 [Zhang YQ, Wang CK. Transpiration of boreal and temperate forests [J]. Chin J Appl Environ Biol, 2008, 14 (6): 838-845]
23 Martin TA, Brown KJ, Cermák J,Ceulemans R, Kucera J, Meinzer FC, Rombold JS, Sprugel DG, Hinckley TM. Crown conductance and tree and stand transpiration in a second-growth Abies amabilis forest [J]. Can J For Res, 1997, 27 (6): 797-808
24 Lagergren F, Lindroth A. Variation in sapflow and stem growth in relation to tree size, competition and thinning in a mixed forest of pine and spruce in Sweden [J]. For Ecol Manage, 2004, 188: 51-63
25 Addington RN, Mitchell RJ, Oren R, Donovan AA. Stomatal sensitivity to vapor pressure deficit and its relationship to hydraulic conductance in Pinus palustris [J]. Tree Physiol, 2004, 24 (5): 561-569
26 Franks PJ. Stomatal control and hydraulic conductance, with special reference to tall trees [J]. Tree Physiol, 2004, 24 (8): 865-878
27 Lu p, Biron P, Granier A, Cochard H. Water relations of adult Norway spruce (Picea abies (L.) Karst) under soil drought in the Vosges mountains: whole-tree hydraulic conductance, xylem embolism and water loss regulation [J]. Ann Sci For, 1996, 53: 113-121
28 Tardieu F, Davies W. Integration of hydraulic and chemical signalling in the control of stomatal conductance and water status of droughted plants [J]. Plant Cell Environ, 1993, 16 (4): 341-349
29 Comstock JP. Hydraulic and chemical signalling in the control of stomatal conductance and transpiration [J]. J Exp Bot, 2002, 53 (367): 195-200
30 朱丽薇, 赵平, 蔡锡安, 曾小平, 邹绿柳, 王权. 荷木人工林蒸腾与冠层气孔导度特征及对环境因子的响应[J]. 热带亚热带植物学报, 2010, 18 (6): 599-606 [Zhu LW, Zhao P, Cai XA, Zeng XP, Zou LL, Wang Q. Characteristics of transpiration and canopy stomatal conductance of Schima superba plantation and their responses to environmental factors [J]. Chin J Trop Subtrop Plants, 2010, 18 (6): 599-606]
31 王建阳. 杉木萌条伴生木荷混交林可持续经营研究[J]. 林业实用技术, 2010 (6): 15-17[Wang JY. The sustainable management research on the mixed plantations of Chinese fir assoceated with Schima superba [J]. Chin Pract For Technol, 2010 (6): 15-17]
32 Do FC, Rocheteau A, Diagne AL, Goudiaby V, Granier A, Lhomme JP. Stable annual pattern of water use by Acacia tortilis in Sahelian Africa [J]. Tree physiol, 2008, 28 (1): 95-104
33 Roupsard O, Ferhi A, Granier A, Pallo F, Depommier D, Mallet B, Joly HI, Dreyer E. Reverse phenology and dry-season water uptake by Faidherbia albida (Del.) A. Chev. in an agroforestry parkland of Sudanese west Africa [J]. Funct Ecol, 1999, 13 (4): 460-472
34 Ryan MG., Bond BJ, Law BE, Hubbard RM, Woodruff D, Cienciala E, Kucera Jiri. Transpiration and whole-tree conductance in ponderosa pine trees of different heights [J]. Oecologia, 2000, 124 (4): 553-560
35 Ryan MG, Yoder BJ. Hydraulic limits to tree height and tree growth [J]. J Bioscience, 1997, 47 (4): 235-242
36 McDowell N, Barnard H, Bond BJ, Hinckley T, Hubbard RM, Ishii H, K?stne B, Magnani F, Marshall JD, Meinzer FC, Phillips N, Ryan MG, Whitehead D. The relationship between tree height and leaf area: sapwood area ratio [J]. Oecologia, 2002, 132 (1): 12-20
37 赵平, 邹绿柳, 饶兴权, 马玲, 倪广艳, 曾小平, 蔡锡安. 成熟马占相思林的蒸腾耗水及年际变化[J]. 生态学报, 2011, 31 (20): 6038-6048 [Zhao P, Zou LL, Rao XQ, Ma L, Ni GY, Zeng XP, Cai XA. Water consumption and annual variation of transpiration in mature Acacia mangium plantation [J]. Acta Ecol Sin, 2011, 31 (20): 6038-6048]
38 Phillips N, Bond BJ, Mcdowell NG, Ryan MG. Canopy and hydraulic conductance in young, mature and old Douglas-fir trees [J]. Tree Physiol, 2002, 22 (2-3): 205-211
39 刘晓静, 赵平, 王权, 蔡锡安, 曾小平. 树高对马占相思整树水分利用的效应[J]. 应用生态学报, 2009, 20 (1): 13-19 [Liu XJ, Zhao P, Wang Q, Cai XA, Zeng XP. Effects of tree height on whole-tree water use of Acacia mangium [J]. Chin J Appl Ecol, 2009, 20 (1): 13-19]
40 Mencuccini M, Grace J. Hydraulic conductance, light interception and needle nutrient concentration in Scots pine stands and their relations with net primary productivity [J]. Tree Physiol, 1996, 16 (5): 459-468

相似文献/References:

[1]朱丽薇,赵平,倪广艳,等.荷木树干CO2释放通量的个体间差异及树干液流的效应[J].应用与环境生物学报,2011,17(04):447.[doi:10.3724/SP.J.1145.2011.00447]
 ZHU Liwei,ZHAO Ping,NI Guangyan,et al.Differences of Stem CO2 Efflux Among Individual Trees of Schima superba and Effects of Sap Flow[J].Chinese Journal of Applied & Environmental Biology,2011,17(02):447.[doi:10.3724/SP.J.1145.2011.00447]

备注/Memo

备注/Memo:
国家自然科学基金项目(41030638,41275169,31170673)和广东省自然科学基金项目(S2012020010933,2014A030313762)资助 Supported by the National Nature Science Foundation of China (41030638, 41275169, 31170673) and the Natural Science Foundation of Guangdong Province (S2012020010933, 2014A030313762)
更新日期/Last Update: 2015-04-28