|本期目录/Table of Contents|

[1]井学辉,曹磊,郭仲军,等.阿尔泰山小东沟林区植被随地形分布规律[J].应用与环境生物学报,2015,21(03):533-539.[doi:10.3724/SP.J.1145.2014.10010]
 JING Xuehui,CAO Lei,GUO Zhongjun,et al.Distribution of vegetation types with topography in the Xiaodonggou forest region of Altai Mountains, northwest China[J].Chinese Journal of Applied & Environmental Biology,2015,21(03):533-539.[doi:10.3724/SP.J.1145.2014.10010]
点击复制

阿尔泰山小东沟林区植被随地形分布规律()
分享到:

《应用与环境生物学报》[ISSN:1006-687X/CN:51-1482/Q]

卷:
21卷
期数:
2015年03期
页码:
533-539
栏目:
研究论文
出版日期:
2015-06-25

文章信息/Info

Title:
Distribution of vegetation types with topography in the Xiaodonggou forest region of Altai Mountains, northwest China
作者:
井学辉曹磊郭仲军臧润国黄继红王计平丁易
1承德市环境保护局 承德 067000 2新疆林业科学院森林生态研究所 乌鲁木齐 830000 3国家林业局森林生态环境重点实验室,中国林业科学研究院森林生态环境与保护研究所 北京 100091
Author(s):
JING Xuehui CAO Lei GUO Zhongjun ZANG Runguo HUANG Jihong WANG Jiping DING Yi
1Chengde Bureau of Environmental Protection of Hebei, Chengde 067000, China 2Institute of Forest Ecology, Xinjiang Academy of Forestry, Urumuqi 830000, China 3Key Laboratory of Forest Ecology and Environment of State Forestry Administration, Institute of Forest Ecology, Environment and Protection, Chinese Academy of Forestry, Beijing 100091, China
关键词:
阿尔泰山小东沟植被类型地形生境
Keywords:
Xiaodonggou Altai Mountain vegetation type topography habitat
分类号:
Q948.114 (245)
DOI:
10.3724/SP.J.1145.2014.10010
文献标志码:
A
摘要:
在高度异质性的山区景观中,地形通过不同生态因子时空分布的影响而成为植被分布的决定性因素. 在野外调查的基础上,将植被遥感影像分类图基本像元分别与由DEM推算出来的坡度、坡向、海拔和剖面曲率图相叠加,定量分析新疆阿尔泰山小东沟林区不同植被类型分布与地形因子之间的关系. 通过遥感影像并结合地面调查数据,可将阿尔泰山小东沟林区的植被划分为针叶林、阔叶林、针阔混交林、灌木林和草地5种类型. 该区域的地形特征如下:坡度以斜陡坡为主,占总面积的64.32%;坡向以西南坡最多,其次是东北坡,分别占总面积的15.02%和14.78%,东南坡和南坡所占面积较少,分别占总面积的9.30%和10.20%;海拔以1 200-2 000 m居多,占总面积的87.19%,是整个研究区的主要海拔分布范围;剖面曲率以5-10°面积最多,占总面积33.31%,其次是剖面曲率3-5°和0-3°,分别占总面积的22.84%和22.44%. 剖面曲率>10°的区域占总面积比例较小. 各植被类型分布频率最高的地形生境因子组合分别为:针叶林是坡度15-35°的斜陡坡,西北坡,海拔1 800-2 000 m,剖面曲率0-3°;阔叶林是坡度15-35°的斜陡坡,西北坡,海拔1 400- 1 600 m,剖面曲率5°-10°;针阔混交林是坡度15-35°的斜陡坡,北坡,海拔1 600-1 800 m,剖面曲率5-10°;灌木林是坡度15-35°的斜陡坡,西坡,海拔1 400-1 600 m,剖面曲率5-10°;草地是坡度15-35°的斜陡坡,南坡,海拔1 200-1 400 m,剖面曲率5-10°. 研究不同植被类型随地形生境的变化规律可为生物多样性保育宏观规划和森林可持续经营提供重要科学依据.
Abstract:
The distribution of vegetation often changes along habitat gradient. To a large extent, the patch mosaic pattern of vegetations in a landscape can reflect the spatial heterogeneity of habitats. In the heterogeneous landscapes of mountainous areas, topography is regarded as the most important factor of restricting vegetation distributions. In this paper, our aim was to explore the general distribution of major vegetation types with the variation of topography, and to select the optimum combination of topographic factors for each vegetation type, so that rational conservation management plan can be made based on the optimum mosaics of vegetation types in the landscape. Filed sample plot investigation was carried out to get vegetation data. Topographic factors were calculated by digital elevation model (DEM). Vegetation types were classified by ground investigation and remote sensing imagery interpretation. The relationship between vegetation distribution and topographic factors was analyzed by overlaying the remote sensing classification pixel map and maps of slope, aspect, altitude, and profile curvature. The vegetation in Xiaodonggou of Altai Mountains could be classified into five types including coniferous forest, broadleaved forest, conifer-broadleaf mixed forest, shrubs, and grassland. The topographic features in the study region are as follows: the slope mainly ranges from 15° to 35°, accounting for 64.32% of the study area. West-south aspect is the main aspect, followed by east-north aspect, accounting for 15.02% and 14.78% respectively of the study area. There are lesser areas in east-south and south aspect, accounting for 9.30% and 10.20% of the study area respectively. In the Xiaodonggou of Altai Mountains, the main altitude gradient ranges from 1 200 m to 2 000 m, accounting for 87.19% of the study area. The value of profile curvature ranges from 5° to 10°, accounting for 33.31% of the study area, while the ranges from 3° to 5° and from 0° to 3°, accounting for 22.84% and 22.44% of the study area respectively. The optimal (high frequency of distribution) combination of topographic factors for different vegetation types are as follows: coniferous forest mainly distributed in slopes from 15° to 35° on west-north aspects with altitude of 1 800 m to 2 000 m, and profile curvature from 0° to 3°. Broadleaved forest is mainly distributed in slopes from 15° to 35° on west-north aspects, with altitude of 1 400 m to 1 600 m, and profile curvature of 5° to 10°. Conifer-broadleaf mixed forest is mainly distributed in slopes from 15° to 35° on north aspects, with altitude of 1 600 m to 1 800 m, and profile curvature from 5° to 10°. The optimal combination of topographic habitat for shrubs is in slopes from 15° to 35° on west aspects, with altitude of 1 400 m to 1 600 m, and profile curvature from 5° to 10°. The optimal combination of topographic habitat for grassland distribution is in slopes from 15° to 35° on south aspects, with altitude from 1 200 m to 1 400 m, and profile curvature from 5° to 10°. The results of this paper can be an important reference for biodiversity conservation, resources utilization and sustainable management planning at landscape scale.

参考文献/References:

1 宋永昌. 植被生态学[M]. 上海: 华东师范大学出版社, 2001 [Song YC. Vegetation ecology [M]. Shanghai: East China Normal University Press, 2001]
2 Levin SA. The problem of pattern and scale in ecology [J]. Ecology, 1992, 73 (6): 1943-1967
3 Turner MG, Gardner RH, O’Neill RV. Landscape ecology in theory and practice. Pattern and process [M]. New York: Springer, 2001
4 Gerhardt F, Foster DR. Physiographical and historical effects on forest vegetation in central New England, USA [J]. J Biogeogr, 2002, 29: 1421-1437
5 Muster S, Elsenbeer H, Conedera M. Small-scale effects of historical land use and topography on post-cultural tree species composition in an Alpine valley in southern Switzerland [J]. Landsc Ecol, 2007, 22 (8): 1187-1199
6 张庆, 牛建明, Buyantuyev A, 韩芳, 董建军, 张艳楠, 康萨如拉, 杨艳. 不同坡位植被分异及土壤效应——以内蒙古短花针茅草原为例[J]. 植物生态学报, 2011, 35 (11): 1167-1181 [Zhang Q, Niu JM, Buyantuyev A, Han F, Dong JJ, Zhang YN, Kang S, Yang Y. Vegetation differentitation and soil effect at different slope locations - a case study of Stipa breviflora grassland in Inner Mongolia, China [J]. Chin J Plant Ecol, 2011, 35 (11): 1167-1181]
7 Hassler SK, Kreyling J, Beierkuhnlein C, Eisold J, Samimi C, Wagenseil H, Jentsch A. Vegetation pattern divergence between dry and wet season in a semiarid savanna-spatio-temporal dynamics of plant diversity in northwest Naibia [J]. J Arid Environ, 2010, 74: 1516-1524
8 Hara M, Hirata K, Oono K. Relationship between microlandform and vegetation structure in an evergreen broad-leaved forest on Okinawa Island, S-W, Japan [J]. Nat Hist Res, 1996, 4 (1): 27-35
9 Pinder JE. The relationship between vegetation types and topography in Lassen Vocalnic National Park [J]. Plant Ecol, 1997, 131: 17-29
10 ?str?m M, Dynesius M, Hylander K, Nilsson C. Slope aspect modifies community responses to clear-cutting in boreal forests [J]. Ecology, 2007, 88 (3): 749-758
11 Holland PG, Steyn DG. Vegetation responses to latitudinal variations in slope angle and aspect [J]. J Biogeogr, 1975, 2: 179-183
12 Fonda RW, Bliss LC. Forest vegetation of the montane and subalpinezones, Olympic Mountains, Washington [J]. Ecol Monogr, 1969, 39: 271-301
13 Whittaker RH. A consideration of climax theory: the climax as a population and pattern [J]. Ecol Monogr, 1953, 23: 41-78
14 刘秋锋, 康慕谊, 刘全儒. 中条山混沟地区森林乔木种的数量分类与环境解释[J]. 植物生态学报, 2006, 30 (3): 383-391 [Liu QF, Kang MY, Liu QR. Quantitative classification and environmental interpretation of forest tree species in Hungou, Zhongtiao Mountain [J]. J Plant Ecol, 2006, 30 (3): 383-391]
15 王国宏 , 杨利民. 祈连山北坡中段森林植被梯度分析及环境解释[J]. 植物生态学报, 2001, 25 (6): 733-740 [Wang GH, Yang LM. Gradient analysisi and environmental interpretation of woody plant communities in the middle section of the northern slopes of Qilian Mountain, Gansu, China [J]. Acta Phytoecol Sin, 2001, 25 (6): 733-740]
16 郭泺, 余世孝, 夏北成, 许佐荣. 地形对山地森林景观格局多尺度效应[J]. 山地学报, 2006, 24 (2): 150-155 [Guo L, Yu SX, Xia BC, Xu ZR. Analysis of the multi-scale effect of topography on forest landscape pattern of mountains [J]. J Mount Sci, 2006, 24 (2): 150-155]
17 郭晋平, 王俊田, 李世光. 关帝山林区景观要素沿环境梯度分布趋势的研究[J]. 植物生态学报, 2000, 24 (2): 135-140 [Guo JP, Wang JT, Li SG. Distribution of landscape elements along environmental gradients in Guandishan Forest Region [J]. Acta Phytoecol Sin, 2000, 24 (2): 135-140]
18 Gergel SE. Assessing cumulative inpacts of levees and dams on floodplain ponds: a neutral- terrain model approach [J]. Ecol Appl, 2002, 12 (6): 1740-1754
19 臧润国, 成克武, 李俊清, 张炜银, 陈雪峰,陶建平. 天然林生物多样性保育与恢复[M]. 北京:中国科学技术出版社, 2005 [Zang RG, Cheng KW, Li JQ, Zhang WY, Chen XF, Tao JP. Biodiversity conservation and restoration of natural forests [M]. Beijing: China Science and Technology Press, 2005]
20 曾东, 李行斌, 于恒. 新疆落叶松、新疆云杉迹地天然更新特点与规律的辨析[J]. 干旱区研究, 2000, 17 (3): 46-52 [Zeng D, Li XB, Yu H. The analysis on Slash regeneration characteristic of Larix sibirica and Picea obvata in Altai Mountains [J]. Arid Zone Res, 2000, 17 (3): 46-52]
21 时旭辉 , 周林生. 新疆天山北坡及阿尔泰山两大林区森林资源动态的研究[J]. 八一农学院学报, 1995, 18 (2): 9-15 [Shi XH, Zhou LS. A study on dynamics of forest resources in the Tianshan Mountains and the Altay Mountains in Xinjiang [J]. J August 1st Agric Coll, 1995, 18 (2): 9-15]
22 陈文俐, 杨昌友. 中国阿尔泰山种子植物区系研究[J]. 云南植物研究, 2000, 22 (4): 371-378 [Chen WL, Yang CY. A floristic study on the seed plant in Mts. Altay of China [J]. Acta Botan Yunnan, 2000, 22 (4): 371-378]
23 阎洪. 薄板光顺样条插值与中国气候空间模拟[J]. 地理科学, 2004, 24 (2): 163-169 [Yan H. Modeling spatial distribution of climate in China using thin plate smoothing spline interpolation[J]. Sci Geogr Sin, 2004, 24 (2): 163-169]
24 张志东, 臧润国. 海南岛霸王岭热带天然林景观中主要木本植物关键种的潜在分布[J]. 植物生态学报, 2007, 31 (6): 1079-1091 [Zhang ZD, Zang RG. Predicting potential distributions of dominant woody plant key-stone species in a natural tropical forest landscape of Bawangling, Hainan Island, South China [J]. Chin J Plant Ecol, 2007, 31 (6): 1079-1091]
25 朱红春, 汤国安, 张友顺, 易红伟, 李明. 基于DEM提取黄土丘陵区沟沿线[J]. 水土保持通报, 2003, 23 (5): 43-45 [Zhu CH, Tang GA, Zhang YS, Yi HW, Li M. Thalweg in Loess Hill area based on DEM [J]. Bull Soil Water Conserv, 2003, 23 (5): 43-45]
26 杨昕, 汤国安, 刘咏梅, 张友顺, 陈卫荣. 基于计曲线的DEM 生成与地形分析——以在黄土高原的试验为例[J]. 水土保持通报, 2003, 23 (3): 48-50, 54 [Yang X, Tang GA, Liu YM, Zhang YS, Chen WR. Accuracy analysis and production of DEM based on index contour [J]. Bull Soil Water Conserv, 2003, 23 (3): 48-50, 54]
27 张徽徽, 武伟, 刘洪斌. 不同比例尺DEM提取地形信息的比较分析——以重庆市为例[J]. 西南大学学报(自然科学版), 2007, 29 (7): 153-157 [Zhang WW, Wu W, Liu HB. Comparative analysis of terrain information derived from different scaled DEMs - a case study of Chongqing [J]. J Southwest Univ, 2007, 29 (7): 153-157]
28 Virgos E, Casanovas JG. Environmental constraints at the edge of a species distribution, the Eurasian Badger (Meles meles L.): a biogeographic approach [J]. J Biogeogr, 1999, 26 (3): 559-564
29 Austin MP, Smith TM. A new model for the continuum concept [J]. Vegetation, 1989, 83: 35-47
30 Austin MP, Cunningham RB, Fleming PM. New approaches to direct gradient analysis using environmental scalars and statistical curve fitting procedures [J]. Vegetatio, 1984, 55: 11-27
31 Coblentz DD, Riitters KH. Topograhic controls on the regional-scale biodiversity of the south-western USA [J]. J Biogeogr, 2004, 31 (7): 1125-1138
32 Allen RB, Peet RK, Baker WL. Gradient analysis of latitudinal variation in southern Rocky Mountain forests [J]. J Biogeogr, 1991, 18 (2): 123-139
33 Burke IC, Lauenroth WK, Riggle R, Brannen P, Madigan B, Beard S. Spatial variability of soil properties in the shortgrass steppe: the relative importance of topography, grazing, microsite, and plant species in controlling spatial patterns [J]. Ecosystems, 1999, 2 (5): 422-438
34 Whittaker RH, Niering WA. Vegetation of the Santa Catalina Mountains, Arizona: a gradient analysis of the south slope [J]. J Ecol, 1965, 46: 429-452
35 Peet RK. Latitudinal variation in Southern Rocky Mountain forests[J]. J Biogeogr, 1978, 5: 275-289
36 Pausas JG, Carreras J, Ferré A, Font X. Coarse-scale plant species richness in relation to environmental heterogeneity [J]. J Veget Sci, 2003, 14: 661-668
37 沈泽昊, 赵俊. 基于植物-地形关系的物种丰富度空间格局预测[J]. 生态学报, 2007, 27 (3): 953-963 [Shen ZH, Zhao J. Prediction of the spatial patterns of species richness based on the plant-topography relationship: an application of GAMs approach [J]. Acta Ecol Sin, 2007, 27 (3): 953-963]
38 Bale CL, Williams JB, Charley JL. The impact of aspect on forest structure and floristics in some eastern Australian sites [J]. For Ecol Manage, 1998, 110: 363-377
39 Sebastia MT. Role of topography and soils in grassland structuring at the landscape and community scales [J]. Basic Appl Ecol, 2004, 5 (4): 331-346
40 Hofer G, Wagner H H, Herzog F, Edwards PJ. Effects of topographic variability on the scaling of plant species richness in gradient dominated landscapes [J]. Ecography, 2008, 31: 131-139
41 Parker AJ. Forest/ environment relationships in Lassen Volcanic National Park, California, U. S. A. [J]. J Biogeogr, 1991, 18 (5): 543-552
42 臧润国, 井学辉, 丁易, 成克武, 白志强, 张新平, 郭仲军, 张炜银. 新疆阿尔泰山小东沟林区木本植物群落的数量分类、排序及其环境解释[J]. 林业科学, 2010, 46 (2): 24-31 [Zang RG, Jing XH, Ding Y, Cheng KW, Bai ZQ, Zhang XP, Guo ZJ, Zhang WY. Quantitative classification, ordination and environmental analysis of woody plant communities in Xiaodonggou Forest area of the Altai Mountain, Xinjiang [J]. Sci Silv Sin, 2010, 46 (2): 24-31]

备注/Memo

备注/Memo:
国家“十二五”科技支撑课题(2012BAD22B0301-2)资助 Supported by the Sci-tech Pillar Project of the Twelfth Five-year Plan of China (2012BAD22B0301-2)
更新日期/Last Update: 2015-06-23