|本期目录/Table of Contents|

[1]陈立华,常义军,王长春,等.发生和未发生连作芦蒿枯萎病土壤的尖孢镰刀菌数量、产毒能力和致病力[J].应用与环境生物学报,2015,21(02):228-233.[doi:10.3724/SP.J.1145.2014.08032]
 CHEN Lihua,CHANG Yijun,WANG Changchun,et al.Population, toxicity and pathogenicity of Fusarium oxysporum in continuously cropped soil of Artemisia selengens with or without Fusarium wilt[J].Chinese Journal of Applied & Environmental Biology,2015,21(02):228-233.[doi:10.3724/SP.J.1145.2014.08032]
点击复制

发生和未发生连作芦蒿枯萎病土壤的尖孢镰刀菌数量、产毒能力和致病力()
分享到:

《应用与环境生物学报》[ISSN:1006-687X/CN:51-1482/Q]

卷:
21卷
期数:
2015年02期
页码:
228-233
栏目:
研究论文
出版日期:
2015-04-25

文章信息/Info

Title:
Population, toxicity and pathogenicity of Fusarium oxysporum in continuously cropped soil of Artemisia selengens with or without Fusarium wilt
作者:
陈立华 常义军 王长春 邵孝侯 马超越 徐明喜 王东升
1河海大学水利水电学院 南京 210098 2南京市蔬菜研究所 南京 210042 3南京市栖霞区农业技术推广站 南京 210046
Author(s):
CHEN Lihua CHANG Yijun WANG Changchun SHAO Xiaohou MA Chaoyue XU Mingxi WANG Dongsheng
1College of Water Conservancy and Hydropower Engineering, Hohai University, Nanjing 210098, China 2Nanjing Institute of Vegetable, Nanjing 210042, China 3Qixia Agricultural Technology Extension Center, Nanjing 210046, China
关键词:
芦蒿连作枯萎病尖孢镰刀菌镰刀菌酸
Keywords:
Artemisia selengens continuously cropped soil Fusarium wilt Fusarium oxysporum fusaric acid
分类号:
S154.3 : S432
DOI:
10.3724/SP.J.1145.2014.08032
文献标志码:
A
摘要:
尖孢镰刀菌引起的枯萎病是芦蒿连作障碍主要病害. 对芦蒿不同种植年限发病和未发病土壤中尖孢镰刀菌数量、产毒素(镰刀菌酸)能力、致病力等开展研究. 对采集的11份土壤样品分析结果显示:相较于不发病土壤,发病率≥40%的土壤尖孢镰刀菌数量显著增加;不发病和发病率≤25%的土壤尖孢镰刀菌数量没有显著差异(P > 0.05). 发病率为85%和40%的土壤尖孢镰刀菌高产毒素(镰刀菌酸产量>500 μg L-1)的菌株比例显著(P < 0.05)高于发病率为11%和不发病土壤. 致病力测定显示发病率为85%和40%土壤中高致病力菌株比例显著(P < 0.05)高于发病率为11%的土壤和不发病土壤,不致病菌株比例显著(P < 0.05)低于发病率为11%的土壤和不发病土壤. 土壤尖孢镰刀菌数量与连作年限没有显著相关性(P > 0.05). 发病土壤中,发病率、尖孢镰刀菌高产毒素菌株比例和高致病力菌株(病情指数>2)比例与连作年限显著(P < 0.05)相关;未发病土壤中,尖孢镰刀菌高产毒素菌株比例和高致病力菌株比例与连作年限没有显著相关性(P > 0.05). 随着连作芦蒿发病率的增加,土壤中尖孢镰刀菌菌株数量、高产毒素菌株比例、致病菌株比例均显著增加(P < 0.05),未发病连作土壤尖孢镰刀菌菌株数量、高产毒素菌株比例、致病菌株比例均没有显著变化. 本研究结果可为连作芦蒿枯萎病发病机理的研究及其防治提供理论基础.
Abstract:
Fusarium wilt caused by Fusarium oxysporum (FO) is the major disease in continuously cropped Artemisia selengens. This research investigated the population, toxicity (production of fusaric acid) and pathogenicity of FO in the continuously cropped soil of Artemisia selengens with or without Fusarium wilt. The results showed that FO population in the soils with 40% or more disease incidence of Fusarium wilt was significantly higher than that in soil without disease (P < 0.05). FO population in the soils with 25% or lower disease incidence was not significantly different from the control (P > 0.05). Percentages of FO with high toxicity (yield of Fusarium acid > 500 μg L-1) were higher (P < 0.05) in soil with Fusarium wilt of 85% and 40% than in soil with Fusarium wilt of 11% or without disease. The same trend was found in the pathogenicity of FO. Populations of FO in the continuously cropped soil were not significantly correlated with the years of continuous cropping. Disease incidence, percentages of FO with high toxicity and high pathogenicity (disease index > 2) were significantly correlated with years of continuous cropping in the soil with high incidence of Fusarium wilt, but not in soil without disease. In the continuously cropped soils of higher disease incidence of Fusarium wilt, the population of FO, percentages of FO with high toxicity and high pathogenicity were also significantly higher (P < 0.05) compared to the continuously cropped soil without Fusarium wilt. In the soil without Fusarium wilt, no significant relationship was found between continuous cropping years and the population of FO, percentages of FO with high toxicity and high pathogenicity (P > 0.05). The results offer a basis for further study of the mechanism of Fusarium wilt in continuously cropped soil and the biocontrol of the disease. Keywords Artemisia selengens; continuously cropped soil; Fusarium wilt; Fusarium oxysporum; fusaric acid

参考文献/References:

1. Israel S, Lodha S. Factors influencing population dynamics of Fusarium oxysporum f. sp. cumini in the presence and absence of cumin crop in arid solis [J]. Phytopathol Mediter, 2004, 43 (1): 3-13
2 Larkin R, Hopkins D, Martin F. Ecology of Fusarium oxysporum f. sp. niveum in soils suppressive and conducive to Fusarium wilt of watermelon [J]. Phytopathology, 1993, 83 (10): 1105-1116
3 Booth C. The genus Fusarium [M]. United Kingdom: Commonwealth Mycological Institute, 1971.
4 Kaur R, Kaur J, Singh RS. Nonpathogenic Fusarium as a biological control agent [J]. Plant Pathol J, 2011, 9 (3): 79-91
5 Poddar R, Singh D, Dubey S. Integrated application of Trichoderma harzianum mutants and carbendazim to manage chickpea wilt (Fusarium oxysporum f. sp. ciceris) [J]. Indian J Agric Sci, 2004, 74 (6): 346-348
6 De Cal A, Martinez-Trece?o A, Salto T, López-Aranda JM, Melgarejo P. Effect of chemical fumigation on soil fungal communities in Spanish strawberry nurseries [J]. Appl Soil Ecol, 2005, 28 (1): 47-56
7 Minuto A, Gullino ML, Lamberti F, D’Addabbo T, Tescari E, Ajwa H, Garibaldi A. Application of an emulsifiable mixture of 1, 3-dichloropropene and chloropicrin against root knot nematodes and soilborne fungi for greenhouse tomatoes in Italy [J]. Crop Protect, 2006, 25 (12): 1244-1252
8 Klein E, Katan J, Gamliel A. Soil suppressiveness to Fusarium disease following organic amendments and solarization [J]. Plant Dis, 2011, 95 (9): 1116-1123
9 Bennett R. Survival of Fusarium oxysporum f. sp. vasinfectum chlamydospores under solarization temperatures [J]. Plant Dis, 2012, 96 (10): 1564-1568
10 叶旭红, 林先贵, 王一明. 尖孢镰刀菌致病相关因子及其分子生物学研究进展[J]. 应用与环境生物学报, 2011, 17 (5): 759-762 [Ye XH, Lin XG, Wang YM. Progress in research on pathogenic factors and related molecular biology of Fusarium oxysporum [J]. Chin J Appl Environ Biol, 2011, 17 (5): 759-762]
11 Leslie JF, Summerell BA. The Fusarium laboratory manual [M]. Blackwell Publishing, 2006
12 Sneh B, Dupler M, Elad Y, Baker R. Chlamydospore germination of Fusarium oxysporum f. sp. cucumerinum as affected by fluorescent and lytic bacteria from a Fusarium-suppressive soil [J]. Phytopathology, 1984, 74 (9): 1115-1124
13 Larkin R, Hopkins D, Martin F. Effect of successive watermelon plantings on Fusarium oxysporum and other microorganisms in soils suppressive and conducive to Fusarium wilt of watermelon [J]. Phytopathology, 1993, 83 (10): 1097-1105
14 Peng H, Sivasithamparam K, Turner D. Chlamydospore germination and Fusarium wilt of banana plantlets in suppressive and conducive soils are affected by physical and chemical factors [J]. Soil Biol Biochem, 1999, 31 (10): 1363-1374
15 Alabouvette C. Fusarium-wilt suppressive soils from the Ch?teaurenard region: review of a 10-year study [J]. Agronomie, 1986, 6 (3): 273-284
16 Komada H. Development of a selective medium for quantitative isolation of Fusarium oxysporum from natural soil [J]. Rev Plant Prot Res, 1975, 8: 114-124
17 Sambrook J, Russell DW, Russell DW. Molecular cloning: a laboratory manual (3-volume set) [M]. New York: Cold Spring Harbor Laboratory Press Cold Spring Harbor, 2001
18 Savard M, Miller J, Ciotola M, Watson A. Secondary metabolites produced by a strain of Fusarium oxysporum used for Striga control in West Africa [J]. Biocontrol Sci Technol, 1997, 7 (1): 61-64
19 El-Hasan A, Walker F, Buchenauer H. Trichoderma harzianum and its metabolite 6-pentyl-alpha-pyrone suppress fusaric acid produced by Fusarium moniliforme [J]. J Phytopathol, 2008, 156 (2): 79-87
20 Bacon C, Porter J, Norred W, Leslie J. Production of fusaric acid by Fusarium species [J]. Appl Environ Microbiol, 1996, 62 (11): 4039-4043
21 Smith SN, DeVay JE, Hsieh WH, Lee HJ. Soil-borne populations of Fusarium oxysporum f. sp. vasinfectum, a cotton wilt fungus in California fields [J]. Mycologia, 2001: 737-743
22 Rekah Y, Shtienberg D, Katan J. Population dynamics of Fusarium oxysporum f. sp. radicis-lycopersici in relation to the onset of Fusarium crown and root rot of tomato [J]. Eur J Plant Pathol, 2001, 107 (4): 367-375
23 Hopkins D, Lobinske R, Larkin R. Selection for Fusarium oxysporum f. sp. niveum race 2 in monocultures of watermelon cultivars resistant to Fusarium wilt [J]. Phytopathology, 1992, 82 (3): 290-293
24 Papavizas GC. Trichoderma and Gliocladium: biology, ecology, and potential for biocontrol [J]. Annu Rev Phytopathol, 1985, 23 (1): 23-54
25 田耀华, 冯玉龙. 微生物研究在土壤质量评估中的应用[J]. 应用与环境生物学报, 2008, 14 (1): 132-137 [Tian YH, Feng YL. Application of microbial research in eveluation of soil quanlity [J]. Chin J Appl Environ Biol, 2008, 14 (1): 132-137]
26 Forsyth LM, Smith LJ, Aitken EA. Identification and characterization of non-pathogenic Fusarium oxysporum capable of increasing and decreasing Fusarium wilt severity [J]. Mycol Res, 2006, 110 (8): 929-935

相似文献/References:

[1]贾志红,易建华,苏以荣,等.云南玉溪烟区轮作与连作土壤细菌群落多样性比较研究[J].应用与环境生物学报,2011,17(02):162.[doi:10.3724/SP.J.1145.2011.00162]
 JIA Zhihong,YI Jianhua,SU Yirong,et al.Comparison of Soil Bacterial Diversity in Rotation and Monocropping Soil in Tobacco Growing Area in Yuxi, Yunnan, China[J].Chinese Journal of Applied & Environmental Biology,2011,17(02):162.[doi:10.3724/SP.J.1145.2011.00162]
[2]郝鲜俊,洪坚平,乔志伟.沼液对甘蓝连作土壤生物学性质的影响[J].应用与环境生物学报,2011,17(03):384.[doi:10.3724/SP.J.1145.2011.00384]
 HAO Xianjun,HONG Jianping,QIAO Zhiwei.Effect of Biogas Slurry on Biological Properties of Cabbage Continuous Cropping Soil[J].Chinese Journal of Applied & Environmental Biology,2011,17(02):384.[doi:10.3724/SP.J.1145.2011.00384]
[3]王海斌** 叶江华 陈晓婷 贾小丽 孔祥海.连作茶树根际土壤酸度对土壤微生物的影响[J].应用与环境生物学报,2016,22(03):480.[doi:10.3724/SP.J.1145.2015.09019]
 WANG Haibin**,YE Jianghua,CHEN Xiaoting,et al.Effect on soil microbes of the rhizospheric soil acidity of tea tree continuous cropping*[J].Chinese Journal of Applied & Environmental Biology,2016,22(02):480.[doi:10.3724/SP.J.1145.2015.09019]
[4]杨永,张学军,李寐华,等.微生物肥料对设施长期连作哈密瓜根际土壤真菌群落结构的影响[J].应用与环境生物学报,2018,24(01):68.[doi:10.19675/j.cnki.1006-687x.2017.03014]
 YANG Yong,ZHANG Xuejun,LI Meihua,et al.Effects of microbiological fertilizer on rhizosphere soil fungus communities under long-term continuous cropping of protected Hami melon[J].Chinese Journal of Applied & Environmental Biology,2018,24(02):68.[doi:10.19675/j.cnki.1006-687x.2017.03014]
[5]张立成,肖卫华,彭沛宇,等.稻—稻—油菜轮作土壤细菌群落的特征[J].应用与环境生物学报,2018,24(02):276.[doi:10.19675/j.cnki.1006-687x.2017.06014]
 ZHANG Licheng,XIAO Weihua,PENG Peiyu,et al.Soil bacterial community characteristics of rice-rice-rape crop rotation[J].Chinese Journal of Applied & Environmental Biology,2018,24(02):276.[doi:10.19675/j.cnki.1006-687x.2017.06014]

备注/Memo

备注/Memo:
国家自然科学基金项目(2013503811)、南京市生物农业项目(2013A46)和中央高校基本科研业务费项目(2012B00614)资助 Supported by the National Natural Science Foundation of China (2013503811), the Bio-agriculture Project of Nanjing (2013A46) and the Fundamental Research Funds for the Central Universities (2012B00614)
更新日期/Last Update: 2015-04-27