|本期目录/Table of Contents|

[1]方晓瑜,李家宝,芮俊鹏,等.产甲烷生化代谢途径研究进展[J].应用与环境生物学报,2015,21(01):1-9.[doi:10.3724/SP.J.1145.2014.08019]
 FANG Xiaoyu,LI Jiabao,RUI Junpeng,et al.Research progress in biochemical pathways of methanogenesis[J].Chinese Journal of Applied & Environmental Biology,2015,21(01):1-9.[doi:10.3724/SP.J.1145.2014.08019]
点击复制

产甲烷生化代谢途径研究进展()
分享到:

《应用与环境生物学报》[ISSN:1006-687X/CN:51-1482/Q]

卷:
21卷
期数:
2015年01期
页码:
1-9
栏目:
综述
出版日期:
2015-02-25

文章信息/Info

Title:
Research progress in biochemical pathways of methanogenesis
作者:
方晓瑜 李家宝 芮俊鹏 李香真
1中国科学院环境与应用微生物重点实验室(成都生物所) 成都 6100412中国科学院成都生物研究所环境微生物四川省重点实验室 成都 6100413中国科学院大学 北京 1000494中国科学院山地生态恢复与生物资源利用重点实验室(成都生物所) 成都 6100415中国科学院成都生物研究所生态系统恢复与生物多样性保育四川省重点实验室 成都 610041
Author(s):
FANG Xiaoyu LI Jiabao RUI Junpeng LI Xiangzhen
1Key Laboratory of Environmental and Applied Microbiology, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China2Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China3University of Chinese Academy of Sciences, Beijing 100049, China4Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China5Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
关键词:
产甲烷菌生化代谢还原CO2途径乙酸途径甲基营养途径
Keywords:
methanogen biochemical pathways CO2-reducing methanogenesis aceticlastic methanogenesis methylotrophic methanogenesis
分类号:
Q939.9
DOI:
10.3724/SP.J.1145.2014.08019
文献标志码:
A
摘要:
微生物产甲烷过程产生的甲烷约占全球甲烷产量的74%. 产甲烷过程对生物燃气生产和全球气候变暖等都有着重要的意义. 本文综述了产甲烷菌的具体生化代谢途径,其本质是产甲烷菌利用细胞内一系列特殊的酶和辅酶将CO2或甲基化合物中的甲基通过一系列的生物化学反应还原成甲烷. 在这一过程中,产甲烷菌细胞能够形成钠离子或质子跨膜梯度,驱动细胞膜上的ATP合成酶将ADP转化成ATP以获得能量. 根据底物类型的不同,可以将该过程分为3类:还原CO2途径、乙酸途径和甲基营养途径. 还原CO2途径是以H2或甲酸作为主要的电子供体还原CO2产生甲烷,其中涉及到一个最新的发现——电子歧化途径;乙酸途径是乙酸被裂解产生甲基基团和羧基基团,随后,羧基基团被氧化产生电子供体H2用于还原甲基基团;甲基营养途径是以简单甲基化合物作为底物,以外界提供的H2或氧化甲基化合物自身产生的还原当量作为电子供体还原甲基化合物中的甲基基团. 通过这3种途径产甲烷的过程中,每消耗1mol底物所产生ATP的顺序为还原CO2途径>甲基营养途径>乙酸途径. 由于产甲烷菌自身难以分离培养,未来将主要通过现代的生物技术和计算机技术,包括基因工程和代谢模型构建等最新技术来研究产甲烷菌的生化代谢过程以及其与其它菌群之间的相互作用机制,以便将其应用于生产实践.
Abstract:
Microbial methanogenesis accounts for approximately 74% of natural methane emission. The process plays a major role in global warming and is important for bioenergy production. This paper reviews the biochemical pathways of methanogenesis. It is currently recognized that methanogenesis proceeds via three biochemical pathways depending on the carbon sources, including hydrogenotrophic, aceticlastic, and methylotrophic methanogenesis. Multiple enzymes and coenzymes are involved in the process, during which Na+ or proton gradient is created across the cell membrane, contributing to limited ATP synthesis. In the hydrogenotrophic pathway, CO2 is reduced to methane with H2 or formate as an electron donor. In the aceticlastic pathway, acetate is split into methyl and carboxyl group, then the carboxyl group is oxidized to produce H2 which is used as the electron donor to reduce methyl group. In the methylotrophic pathway, methyl group is reduced with external H2 or reducing equivalent from the oxidation of its own methyl group. The ATP gained from per mol substrate for different pathways are as follows: hydrogenotrophic > methylotrophic > aceticlastic pathway. Due to the unculturability of most archaeal methanogens, understandings of the biochemical pathways of methanogenesis and the relationships between methanogens and other microbial communities will have to depend on new technologies including bioinformatics, gene engineering and metabolic modelling.

参考文献/References:

1 Ferry JG, House CH. The stepwise evolution of early life driven by energy conservation [J]. Mol Biol Evol, 2006, 23 (6): 1286-1292
2 Battistuzzi FU, Feijao A, Hedges SB. A genomic timescale of prokaryote evolution: insights into the origin of methanogenesis, phototrophy, and the colonization of land [J]. BMC Evol Biol, 2004, 4 (44): 1-14
3 Ferry JG. Fundamentals of methanogenic pathways that are key to the biomethanation of complex biomass [J]. Curr Opin Microbiol, 2011, 22 (3): 351-357
4 Lelieveld J, Crutzen P, Brühl C. Climate effects of atmospheric methane [J].Chemosphere, 1993, 26 (1): 739-768
5 陈槐, 周舜, 吴宁, 王艳芬, 罗鹏, 石福孙. 湿地甲烷的产生、氧化及排放通量研究进展[J]. 应用与环境生物学报, 2006, 12 (5): 726-733 [Chen H, Zhou S, Wu N, Wang YF, Luo P, Shi FS. Advance in studies on production, oxidation and emission flux of methane from wetlands [J].Chin J Appl Environ Biol, 2006, 12 (5): 726-733]
6 Lowe DC. Global change: a green source of surprise [J]. Nature, 2006, 439 (7073): 148-149
7 Whitman WB, Bowen TL, Boone DR. The methanogenic bacteria [M]. Springer, 2006
8 Garcia JL, Patel BKC, Ollivier B. Taxonomic, phylogenetic, and ecological diversity of methanogenic archaea [J]. Anaerobe, 2000, 6 (4): 205-226
9 Woese CR, Kandler O, Wheelis ML. Towards a natural system of organisms-proposal for the domain archaea, bacteria, and eucarya [J]. Proc Natl Acad Sci USA, 1990, 87 (12): 4576-4579
10 Sakai S, Imachi H, Hanada S, Ohashi A, Harada H, Kamagata Y. Methanocella paludicola gen. nov., sp nov., a methane-producing archaeon, the first isolate of the lineage ‘Rice Cluster I’, and proposal of the new archaeal order Methanocellales ord. nov [J]. Int J Syst Evol Micr, 2008, 58: 929-936
11 Paul K, Nonoh JO, Mikulski L, Brune A. “Methanoplasmatales,” thermoplasmatales-related archaea in termite guts and other environments, are the seventh order of methanogens [J]. Appl Environ Microb, 2012, 78 (23): 8245-8253
12 Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, Peplies J, Glockner FO. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools [J]. Nucleic Acids Res, 2013, 41: 590-596
13 Conrad R. Control of microbial methane production in wetland rice fields [J]. Nutr Cycl Agroecosys, 2002, 64 (1-2): 59-69
14 傅霖, 辛明秀. 产甲烷菌的生态多样性及工业应用[J]. 应用与环境生物学报, 2009, 15 (2): 574-578 [Fu L, Xin MX. Ecological diversity and industrial application of methanogens. Chin J Appl Environ Biol, 2009, 15 (2): 574-578]
15 Leadbetter JR, Breznak JA. Physiological ecology of Methano-brevibacter cuticularis sp. nov and Methanobrevibacter curvatus sp. nov., isolated from the hindgut of the termite Reticulitermes flavipes [J]. Appl Environ Microb, 1996, 62 (10): 3620-3631
16 Whitman WB, Ankwanda E, Wolfe RS. Nutrition and carbon metabolism of Methanococcus voltae [J]. J Bacteriol, 1982, 149 (3): 852-863
17 Garcia JL. Taxonomy and ecology of methanogens [J]. FEMS Microbiol Lett, 1990, 87 (3-4): 297-308
18 Ferry JG. Enzymology of one-carbon metabolism in methanogenic pathways [J]. FEMS Microbiol Rev, 1999, 23 (1): 13-38
19 Thauer RK, Kaster AK, Seedorf H, Buckel W, Hedderich R. Methanogenic archaea: ecologically relevant differences in energy conservation [J]. Nat Rev Microbiol, 2008, 6 (8): 579-591
20 Abken H-J, Tietze M, Brodersen J, B?umer S, Beifuss U, Deppenmeier U. Isolation and characterization of methanophenazine and function of phenazines in membrane-bound electron transport of Methanosarcinamazei G?1 [J]. J Bacteriol, 1998, 180 (8): 2027-2032
21 Thauer RK. Biochemistry of methanogenesis: a tribute to Marjory Stephenson [J]. Microbiol-Sgm, 1998, 144: 2377-2406
22 Taylor CD, Wolfe RS. Structure and methylation of coenzyme M (HSCH2CH2SO3) [J]. J Biol Chem, 1974, 249 (15): 4879-4885
23 Hedderich R, Whitman WB. Physiology and biochemistry of the methane-producing archaea [M]. Springer, 2006
24 Cheeseman P, Toms-Wood A, Wolfe R. Isolation and properties of a fluorescent compound, Factor420, from Methanobacterium strain MoH [J]. J Bacteriol, 1972, 112 (1): 527-531
25 Edwards T, McBride B. New method for the isolation and identification of methanogenic bacteria [J]. Appl microbiol, 1975, 29 (4): 540-545
26 Large PJ. Methylotrophy and methanogenesis [M]. Washington: American Society for Microbiology, 1983
27 Liu Y, Whitman WB. Metabolic, phylogenetic, and ecological diversity of the methanogenic archaea [J]. Ann NY Acad Sci, 2008, 1125 (1): 171-189
28 Shima S, Thauer RK. Methyl-coenzyme M reductase and the anaerobic oxidation of methane in methanotrophic archaea [J]. Curr Opin Microbiol, 2005, 8 (6): 643-648
29 Morris R, Schauer-Gimenez A, Bhattad U, Kearney C, Struble CA, Zitomer D, Maki JS. Methyl coenzyme M reductase (mcrA) gene abundance correlates with activity measurements of methanogenic H2/CO2-enriched anaerobic biomass [J]. Microb Biotechnol, 2014, 7 (1): 77-84
30 Springer E, Sachs MS, Woese CR, Boone DR. Partial gene sequences for the A subunit of methyl-coenzyme M reductase (mcrI) as a phylogenetic tool for the family Methanosarcinaceae [J]. Int J Syst Bacteriol, 1995, 45 (3): 554-559
31 Luton PE, Wayne JM, Sharp RJ, Riley PW. The mcrA gene as an alternative to 16S rRNA in the phylogenetic analysis of methanogen populations in landfill [J]. Microbiology, 2002, 148 (11): 3521-3530
32 Friedmann HC, Klein A, Thauer RK. Structure and function of the nickel porphinoid, coenzyme F430, and of its enzyme, methyl coenzyme M reductase [J]. FEMS Microbiol Lett, 1990, 87 (3): 339-348
33 Prakash D, Wu Y, Suh S-J, Duin EC. Elucidating the process of activation of methyl-coenzyme M reductase [J]. J Bacteriol, 2014, 196: 2491-2498
34 Ermler U, Grabarse W, Shima S, Goubeaud M, Thauer RK. Crystal structure of methyl-coenzyme M reductase: the key enzyme of biological methane formation [J]. Science, 1997, 278 (5342): 1457-1462
35 Rospert S, Linder D, Ellermann J, Thauer RK. Two genetically distinct methyl-coenzyme M reductases in Methanobacterium thermoautotrophicum strain Marburg and ΔH [J]. Eur J Biochem, 1990, 194 (3): 871-877
36 N?lling J, Pihl TD, Vriesema A, Reeve JN. Organization and growth phase-dependent transcription of methane genes in two regions of the Methanobacterium thermoautotrophicum genome [J]. J Bacteriol, 1995, 177 (9): 2460-2468
37 Pihl TD, Sharma S, Reeve JN. Growth phase-dependent transcription of the genes that encode the two methyl coenzyme M reductase isoenzymes and N5-methyltetrahydromethanopterin:coenzyme M methyltransferase in Methanobacterium thermoautotrophicum delta H [J]. J Bacteriol, 1994, 176 (20): 6384-6391
38 Bobik TA, Olson KD, Noll KM, Wolfe RS. Evidence that the heterodisulfide of coenzyme-M and 7-mercaptoheptanoyl threonine phosphate is a product of the methanylreductase reaction in Methanobacterium [J]. Biochem Biophys Res Commun, 1987, 149 (2): 455-460
39 Heiden S, Hedderich R, Setzke E, Thauer RK. Purification of a two-subunit cytochrome-b-containing heterodisulfide reductase from methanol-grown Methanosarcina barkeri [J]. Eur J Biochem, 1994, 221 (2): 855-861
40 Stojanowic A, Mander GJ, Duin EC, Hedderich R. Physiological role of the F420-non-reducing hydrogenase (Mvh) from Methanothermobacter marburgensis [J]. Arch Microbiol, 2003, 180 (3): 194-203
41 Buckel W, Thauer RK. Energy conservation via electron bifurcating ferredoxin reduction and proton/Na+ translocating ferredoxin oxidation [J]. Biochim Biophys Acta-Bioenerg, 2013, 1827 (2): 94-113
42 Buan NR, Metcalf WW. Methanogenesis by Methanosarcina acetivorans involves two structurally and functionally distinct classes of heterodisulfide reductase [J]. Mol Microbiol, 2010, 75 (4): 843-853
43 Wood GE, Haydock AK, Leigh JA. Function and regulation of the formate dehydrogenase genes of the methanogenic archaeon Methanococcus maripaludis [J]. J Bacteriol, 2003, 185 (8): 2548-2554
44 Rother M, Oelgeschl?ger E, Metcalf WW. Genetic and proteomic analyses of CO utilization by Methanosarcina acetivorans [J]. Arch Microbiol, 2007, 188 (5): 463-472
45 Ferry JG. CO in methanogenesis [J]. Ann Microbiol, 2010, 60 (1): 1-12
46 Deppenmeier U, Müller V, Gottschalk G. Pathways of energy conservation in methanogenic archaea [J]. Arch Microbiol, 1996, 165 (3): 149-163
47 Bult CJ, White O, Olsen GJ, Zhou L, Fleischmann RD, Sutton GG, Blake JA, FitzGerald LM, Clayton RA, Gocayne JD, Kerlavage AR, Dougherty BA, Tomb JF, Adams MD, Reich CI, Overbeek R, Kirkness EF, Weinstock KG, Merrick JM, Glodek A, Scott JL, Geoghagen NS, Venter JC. Complete genome sequence of the methanogenic archaeon, Methanococcus jannaschii [J]. Science, 1996, 273 (5278): 1058-1073
48 Enssle M, Zirngibl C, Linder D, Thauer R. Coenzyme F420 dependent N5, N10-methylenetetrahydromethanopterin dehydrogenase in methanol grown Methanosarcina barkeri [J]. Arch Microbiol, 1991, 155 (5): 483-490
49 Ma K, Linder D, Stetter K, Thauer R. Purification and properties of N5, N10-methylenetetrahydromethanopterin reductase (coenzyme F420-dependent) from the extreme thermophile Methanopyrus kandleri [J]. Arch Microbiol, 1991, 155 (6): 593-600
50 MA K, THAUER RK. Purification and properties of N5, N10-methylenetetrahydromethanopterin reductase from Methanobacterium thermoautotrophicum (strain Marburg) [J]. Eur J Biochem, 1990, 191 (1): 187-193
51 Weiss DS, G?rtner P, Thauer RK. The energetics and sodium-ion dependence of N5-methyltetrahydromethanopterin: coenzyme M methyltransferase studied with Cob (I) alamin as methyl acceptor and methylcob (III) alamin as Methyl Donor [J]. Eur J Biochem, 1994, 226 (3): 799-809
52 Gottschalk G, Thauer RK. The Na+ translocating methyltransferase complex from methanogenic archaea [J]. Biochim Biophys Acta-Bioenerg, 2001, 1505 (1): 28-36
53 Gartner P, Ecker A, Fischer R, Linder D, Fuchs G, Thauer RK. Purification and properties of N5-methyltetrahydromethanopterin: coenzyme M methyltransferase from Methanobacterium thermoautotrophicum [J]. Eur J Biochem, 1993, 213 (1): 537-545
54 Hippler B, Thauer RK. The energy conserving methyltetrahydrome-thanopterin: coenzyme M methyltransferase complex from methano-genic archaea: function of the subunit MtrH [J]. FEBS Lett, 1999, 449 (2): 165-168
55 Gottschalk G, Thauer RK. The Na+-translocating methyltransferase complex from methanogenic archaea [J]. Biochim Biophys Acta-Bioenerg, 2001, 1505 (1): 28-36
56 Jetten MS, Stams AJ, Zehnder AJ. Methanogenesis from acetate: a comparison of the acetate metabolism in Methanothrix soehngenii and Methanosarcina spp. [J]. FEMS Microbiol Lett, 1992, 88 (3): 181-197
57 Abbanat DR, Ferry JG. Resolution of component proteins in an enzyme complex from Methanosarcina thermophila catalyzing the synthesis or cleavage of acetyl-CoA [J]. Proc Natl Acad Sci USA, 1991, 88 (8): 3272-3276
58 Grahame DA, DeMoll E. Partial reactions catalyzed by protein components of the acetyl-CoA decarbonylase synthase enzyme complex from Methanosarcina barkeri [J]. J Biol Chem, 1996, 271 (14): 8352-8358
59 Grahame DA, DeMoll E. Substrate and accessory protein requirements and thermodynamics of acetyl-CoA synthesis and cleavage in Methanosarcina barkeri [J]. Biochemistry, 1995, 34 (14): 4617-4624
60 Ferry JG. Methane from acetate [J]. J Bacteriol, 1992, 174 (17): 5489-5495
61 Jetten MSM, Hagen WR, Pierik AJ, Stams AJM, Zehnder AJB. Paramagnetic centers and acetyl-coenzyme A/CO exchange activity of carbon monoxide dehydrogenase from Methanothrix soehngenii [J]. Eur J Biochem, 1991, 195 (2): 385-391
62 Biavati B, Vasta M, Ferry JG. Isolation and characterization of” Methanosphaera cuniculi” sp. nov. [J]. Appl Environ Microb, 1988, 54 (3): 768-771
63 Fricke WF, Seedorf H, Henne A, Kruer M, Liesegang H, Hedderich R, Gottschalk G, Thauer RK. The genome sequence of Methanosphaera stadtmanae reveals why this human intestinal archaeon is restricted to methanol and H2 for methane formation and ATP synthesis [J]. J Bacteriol, 2006, 188 (2): 642-658
64 Sauer K, Harms U, Thauer RK. Methanol: coenzyme M methyltransferase from Methanosarcina barkeri purification, properties and encoding genes of the corrinoid protein MT1 [J]. Eur J Biochem, 1997, 243 (3): 670-677
65 Burke SA, Krzycki JA. Reconstitution of monomethylamine: coenzyme M methyl transfer with a corrinoid protein and two methyltransferases purified from Methanosarcina barkeri [J]. J Biol Chem, 1997, 272 (26): 16570-16577
66 Ferguson DJ, Krzycki JA, Grahame DA. Specific roles of methylcobamide: coenzyme M methyltransferase isozymes in metabolism of methanol and methylamines in Methanosarcina barkeri [J]. J Biol Chem, 1996, 271 (9): 5189-5194
67 Ferguson D, Krzycki JA. Reconstitution of trimethylamine-dependent coenzyme M methylation with the trimethylamine corrinoid protein and the isozymes of methyltransferase II from Methanosarcina barkeri [J]. J Bacteriol, 1997, 179 (3): 846-852
68 Rosenblatt DS, Fenton WA. Chemistry and biology of B12 [M]. New York: Wiley-intersciences, 1999: 666
69 Tallant TC, Paul L, Krzycki JA. The MtsA subunit of the methylthiol: coenzyme M methyltransferase of Methanosarcina barkeri catalyses both half-reactions of corrinoid-dependent dimethylsulfide: coenzyme M methyl transfer [J]. J Biol Chem, 2001, 276 (6): 4485-4493
70 Hedderich R, Whitman WB. Physiology and biochemistry of the methane-producing archaea [M]. Springer, 2013.
71 Leigh JA, Albers SV, Atomi H, Allers T. Model organisms for genetics in the domain archaea: methanogens, halophiles, Thermococcales and Sulfolobales [J]. FEMS Microbiol Rev, 2011, 35 (4): 577-608
72 Watkins AJ, Roussel EG, Parkes RJ, Sass H. Glycine betaine as a direct substrate for methanogens (Methanococcoides spp.) [J]. Appl Environ Microb, 2014, 80 (1): 289-293
73 Gardner WL, Whitman WB. Expression vectors for Methanococcus maripaludis: Overexpression of acetohydroxyacid synthase and beta-galactosidase [J]. Genetics, 1999, 152 (4): 1439-1447
74 Metcalf WW, Zhang JK, Apolinario E, Sowers KR, Wolfe RS. A genetic system for archaea of the genus Methanosarcina: Liposome-mediated transformation and construction of shuttle vectors [J]. Proc Natl Acad Sci USA, 1997, 94 (6): 2626-2631
75 Moore BC, Leigh JA. Markerless mutagenesis in Methanococcus maripaludis demonstrates roles for alanine dehydrogenase, alanine racemase, and alanine permease [J]. J Bacteriol, 2005, 187 (3): 972-979
76 Pritchett MA, Zhang JK, Metcalf WW. Development of a markerless genetic exchange method for Methanosarcina acetivorans C2A and its use in construction of new genetic tools for methanogenic archaea [J]. Appl Environ Microb, 2004, 70 (3): 1425-1433
77 Guss AM, Rother M, Zhang JK, Kulkkarni G, Metcalf WW. New methods for tightly regulated gene expression and highly efficient chromosomal integration of cloned genes for Methanosarcina species [J]. Archaea, 2008, 2 (3): 193-203
78 Farkas JA, Picking JW, Santangelo TJ. Genetic techniques for the archaea [J]. Annu Rev Genet, 2013,47: 539-561
79 Costa KC, Leigh JA. Metabolic versatility in methanogens [J]. Curr Opin Microbiol, 2014, 29: 70-75
80 Welander PV, Metcalf WW. Mutagenesis of the C1 oxidation pathway in Methanosarcina barkeri: new insights into the Mtr/Mer bypass pathway [J]. J Bacteriol, 2008, 190 (6): 1928-1936.
81 Lessner DJ, Lhu L, Wahal CS, Ferry JG. An engineered methanogenic pathway derived from the domains bacteria and archaea [J]. MBio, 2010, 1 (5): 1-4
82 Rotaru A-E, Shrestha PM, Liu F, Shrestha M, Shrestha D, Embree M, Zengler K, Wardman C, Nevin KP, Lovley DR. A new model for electron flow during anaerobic digestion: direct interspecies electron transfer to Methanosaeta for the reduction of carbon dioxide to methane [J]. Energy Environ Sci, 2014
83 Feist AM, Scholten JC, Palsson BO, Brockman FJ, Ideker T. Modeling methanogenesis with a genome-scale metabolic reconstruction of Methanosarcina barkeri [J]. Mol Syst Biol, 2006, 2: 1-14
84 Gonnerman MC, Benedict MN, Feist AM, Metcalf WW, Price ND. Genomically and biochemically accurate metabolic reconstruction of Methanosarcina barkeri Fusaro, iMG746 [J]. Biotechnol J, 2013, 8 (9): 1070-1079
85 Kumar VS, Ferry JG, Maranas CD. Metabolic reconstruction of the archaeon methanogen Methanosarcina Acetivorans [J]. BMC Syst Biol, 2011, 5 (28): 1-10
86 Oberhardt MA, Palsson B?, Papin JA. Applications of genome-scale metabolic reconstructions [J]. Mol Syst Biol, 2009, 5 (1): 1-15

相似文献/References:

[1]傅霖,辛明秀.产甲烷菌的生态多样性及工业应用[J].应用与环境生物学报,2009,15(04):574.[doi:10.3724/SP.J.1145.2009.00574]
 FU Lin,XIN Mingxiu.Ecological Diversity and Industrial Application of Methanogens[J].Chinese Journal of Applied & Environmental Biology,2009,15(01):574.[doi:10.3724/SP.J.1145.2009.00574]
[2]胡亚东,袁月祥,闫志英,等.一株生长pH较宽的产甲烷菌分离与系统发育分析[J].应用与环境生物学报,2009,15(04):554.[doi:10.3724/SP.J.1145.2009.00554]
 HU Yadong,YUAN Yuexiang,YAN Zhiying,et al.Identification and Phylogenetic Analysis of a strain Methanogen with Wide Range of Growing pH[J].Chinese Journal of Applied & Environmental Biology,2009,15(01):554.[doi:10.3724/SP.J.1145.2009.00554]
[3]袁敏,张辉,胡国全.一株兼性嗜冷小甲烷粒菌的生物学特性及系统发育分析[J].应用与环境生物学报,2010,16(05):705.[doi:10.3724/SP.J.1145.2010.00705]
 YUAN Min,ZHANG Hui,HU Guoquan.Biological Characteristics and Phylogenetic Analysis of a Strain of Methanocorpusculum parvum[J].Chinese Journal of Applied & Environmental Biology,2010,16(01):705.[doi:10.3724/SP.J.1145.2010.00705]
[4]王俪鲆,张良,刘来雁,等.泸州古酿酒窖池中两株产甲烷杆菌比较研究[J].应用与环境生物学报,2010,16(06):840.[doi:10.3724/SP.J.1145.2010.00840]
 WANG Liping,ZHANG Liang,LIU Laiyan,et al.Comparative Study of Two Methanobacterium Strains in the Ancient Fermentation Pits of Luzhou[J].Chinese Journal of Applied & Environmental Biology,2010,16(01):840.[doi:10.3724/SP.J.1145.2010.00840]
[5]王芳,刘晓飞,刘晓风,等.产氢菌对沼气发酵的生物强化作用[J].应用与环境生物学报,2013,19(02):351.[doi:10.3724/SP.J.1145.2013.00351]
 WANG Fang,LIU Xiaofei,LIU Xiaofeng,et al.Biotechnological Intensification of Biogas Fermentation by Hydrogen Producing Bacteria[J].Chinese Journal of Applied & Environmental Biology,2013,19(01):351.[doi:10.3724/SP.J.1145.2013.00351]
[6]王珊珊,韩娅新,何环,等.煤层水中一株产甲烷菌的分离与系统发育分析[J].应用与环境生物学报,2014,20(01):123.[doi:10.3724/SP.J.1145.2014.00123]
 WANG Shanshan,HAN Yaxin,HE Huan,et al.Isolation and phylogenic analysis of a methanogen from coal bed water[J].Chinese Journal of Applied & Environmental Biology,2014,20(01):123.[doi:10.3724/SP.J.1145.2014.00123]
[7]叶飞,吴胜军,黄培,等.微氧折流反应器启动过程产甲烷菌群落结构变化特征[J].应用与环境生物学报,2014,20(03):407.[doi:10.3724/SP.J.1145.2014.08026]
 YE Fei,WU Shengjun,HUANG Pei,et al.Structure characteristics of methanogenic community produced during the startup of microaerobic baffled reactor[J].Chinese Journal of Applied & Environmental Biology,2014,20(01):407.[doi:10.3724/SP.J.1145.2014.08026]
[8]张小元,李香真,李家宝.微生物互营产甲烷研究进展[J].应用与环境生物学报,2016,22(01):156.[doi:10.3724/SP.J.1145.2015.07033]
 ZHANG Xiaoyuan,,et al.Microbial syntrophic methanogenesis: a review[J].Chinese Journal of Applied & Environmental Biology,2016,22(01):156.[doi:10.3724/SP.J.1145.2015.07033]
[9]王艳发,魏士平,崔鸿鹏,等.祁连山冻土区土壤活动层与冻土层中甲烷代谢微生物群落结构特征[J].应用与环境生物学报,2016,22(22卷04):592.[doi:10.3724/SP.J.1145.2016.01051]
 WANG Yanfa,WEI Shiping**,et al.Methane metabolic microbial community structure in the active layer and the permafrost layer of the Qilian permafrost, China*[J].Chinese Journal of Applied & Environmental Biology,2016,22(01):592.[doi:10.3724/SP.J.1145.2016.01051]
[10]陈颖,邱凯瑞,吴麒,等.桂林会仙岩溶湿地产甲烷菌的数量、群落组成和活性[J].应用与环境生物学报,2017,23(06):959.[doi:10.3724/SP.J.1145.2016.11043]
 CHEN Ying,**,QIU Kairui,et al.Methanogenic community structure, abundance, and activity in Huixian karst wetland, Guilin, China[J].Chinese Journal of Applied & Environmental Biology,2017,23(01):959.[doi:10.3724/SP.J.1145.2016.11043]

备注/Memo

备注/Memo:
国家重点基础研究发展规划项目(973项目,2013CB733502)和国家自然科学基金项目(31300447,41371268)资助 Supported by the State Key Basic R & D Program of China (973 Program, 2013CB733502 ), and the National Natural Science Foundation of China (31300447, 41371268)
更新日期/Last Update: 2015-02-15