|本期目录/Table of Contents|

[1]苟梓希,李云成,谢采芸,等.工业酿酒酵母菌株KF-7对发酵抑制物的耐受性[J].应用与环境生物学报,2015,21(02):248-255.[doi:10.3724/SP.J.1145.2014.08009]
 GOU Zixi,LI Yuncheng,XIE Caiyun,et al.Evaluation of the inhibitor-tolerance of industrial Saccharomyces cerevisiae strain KF-7[J].Chinese Journal of Applied & Environmental Biology,2015,21(02):248-255.[doi:10.3724/SP.J.1145.2014.08009]
点击复制

工业酿酒酵母菌株KF-7对发酵抑制物的耐受性()
分享到:

《应用与环境生物学报》[ISSN:1006-687X/CN:51-1482/Q]

卷:
21卷
期数:
2015年02期
页码:
248-255
栏目:
研究论文
出版日期:
2015-04-25

文章信息/Info

Title:
Evaluation of the inhibitor-tolerance of industrial Saccharomyces cerevisiae strain KF-7
作者:
苟梓希 李云成 谢采芸 汤岳琴 木田建次
1四川大学建筑与环境学院四川省环境保护有机废弃物资源化利用重点实验室 成都 610207 2四川大学轻纺与食品学院 成都 610065
Author(s):
GOU Zixi LI Yuncheng XIE Caiyun TANG Yueqin KIDA Kenji1
1 Sichuan Environmental Protection Key Laboratory of Organic Wastes Utilization, College of Architecture and Environment, Sichuan University, Chengdu 610207, China 2College of Light Industry, Textile and Food Engineering, Sichuan University, Chengdu 610065, China
关键词:
燃料乙醇工业酿酒酵母发酵抑制物批次发酵
Keywords:
fuel ethanol industrial Saccharomyces cerevisiae fermentation inhibitors batch fermentation
分类号:
TQ9201.1 : TK6
DOI:
10.3724/SP.J.1145.2014.08009
文献标志码:
A
摘要:
木质纤维素原料预处理过程中产生的抑制物是燃料乙醇发酵的一大障碍,要求工业酿酒酵母菌株具有优秀的抑制物耐受能力. 利用平板培养和批次发酵两种方式系统评价了弱酸抑制物(乙酸、甲酸、乙酰丙酸)、呋喃类抑制物[糠醛和5-羟甲基糠醛(HMF)]、酚类抑制物(香草醛、丁香醛、苯酚)对工业酿酒酵母菌株KF-7生长和发酵的影响. 结果显示,菌株KF-7在批次发酵时细胞生长对抑制物的耐受性优于平板培养. 低浓度的抑制物虽然对菌株的生长有一定的抑制作用,但对乙醇的产生具有一定的促进作用;高浓度抑制物显著抑制了菌株的生长,降低了葡萄糖的代谢速率,抑制了乙醇的产生. 菌株KF-7对甲酸耐受能力强于乙酸,对乙酰丙酸的耐受能力较弱. 在平板生长评价中,糠醛对菌株生长的抑制作用强于HMF,但在批次发酵过程中HMF的抑制作用强于糠醛;该菌株代谢糠醛的能力强于代谢HMF的能力. 香草醛对菌株的抑制作用最强,丁香醛相对较弱. 在秸秆水解液中,菌株KF-7也表现出良好的乙醇发酵性能. 菌株KF-7无论在单一抑制物、混合抑制物或实际水解液条件下发酵,均能达到较高的乙醇收率. 本研究表明,菌株KF-7适用于纤维素原料燃料乙醇工业化生产过程.
Abstract:
Inhibitors produced during the pretreatment and saccharification process are a big obstacle in ethanol fermentation during the production of fuel ethanol from lignocellulosic biomass. The industrial strain used for ethanol fermentation should have excellent inhibitor-tolerance. In this study, the effects of inhibitors, including weak acids (acetic, formic and levulinic acids), furans (furfural and 5-hydroxymethl-2-furaldehyde (HMF)), phenolics (syringaldehyde, vanillin and phenol), on the growth and fermentation of the industrial Saccharomyces cerevisiae strain KF-7 were evaluated through plate cultivation and batch fermentation. The results showed that cells grew better in batch fermentation than on plate cultivation at the same concentrations of inhibitors. Low concentrations of inhibitors inhibited the growth but increased ethanol production. The growth was severely inhibited and sugar consumption delayed with inhibitors of high concentration. The strain was more tolerant to formic acid than to acetic acid. Furfural showed much greater inhibition on the growth than HMF in plate cultivation, but less inhibition in batch fermentation. The strain metabolizes furfural better than HMF. Plate cultivation and batch fermentation results showed an inhibitory effect order of vanillin > phenol > syringaldehyde. Strain KF-7 showed good tolerance to most inhibitors and good fermentation ability for rape straw hydrolysate, achieving high ethanol yields in fermenting with one single inhibitor or mixed inhibitors or straw hydrolysate. These results suggested that industrial S. cerevisiae strain KF-7 has high potential application value in lignocellulosic bioethanol production. Keywords

参考文献/References:

1 Palmqvist E, Grage H, Meinander NQ, Hahn-H?gerdal B. Main and interactive effects of acetic acid, furfural and p-hydroxybenzoic acid on growth and ethanol productivity of yeasts [J]. Biotechnol Bioeng, 1999, 63 (1): 46-55
2 Palmqvist E, Almdida JS, Hahn-H?gerdal B. Influence of furfural on anaerobic glycolytic kinetics of Saccharomyces cerevisiae in batch culture [J]. Biotechnol Bioeng, 1999, 62 (4): 447-454
3 李科, 靳艳玲, 甘明哲, 刘晓风, 赵海. 木质纤维素生产燃料乙醇的关键技术研究现状[J]. 应用与环境生物学报, 2008, 14 (6): 877-884 [Li K, Jin YL, Gan MZ, Liu XF, Zhao H. Progress in research of key techniques for ethanol production from lignocellulose [J]. Chin J Appl Environ Biol, 2008, 14 (6): 877-884 ]
4 Sánchez OJ, Cardona CA. Trends in biotechnological production of fuel ethanol from different feedstocks [J]. Bioresour Technol, 2008, 99 (13): 5270-5295
5 Almeida JRM, Modig T, Petersson A, Hahn-H?gerdal B, Lidén G, Gorwa-Grauslund MF. Increased to tolerance and concervision of inhibitiors in lignocellulosic hydrolysates by Saccharomyces cerevisiae [J]. J Chem Technol Biotechnol, 2007, 82: 340-349
6 孙彦平, 靳艳玲, 郜晓峰, 李新波, 肖瑶, 赵海. 纤维素酸解副产物对Closridium acetobutylicum CICC8012发酵的影响[J]. 应用与环境生物学报, 2010, 16 (6): 845-850 [Sun YP, Jin YL, Gao XF, Li XB, Xiao Y, Zhao H. Effects of byproduction from acid hydrolysis of lignocellulose on butanol fermentation by Clostridium acetobutylicum CICC8012 [J]. Chin J Appl Environ Biol, 2010, 16 (6): 845-850 ]
7 李云成, 汤岳琴, 木田建次. “组学”技术在燃料乙醇生产用酿酒酵母菌株构建中的应用[J]. 中国生物工程杂志, 2014, 34 (2): 118-128 [Li YC, Tang YQ, Kida K. Application of omics technology in construction of Saccharomyces cerevisiae strains for ethanol production [J]. China Biotechnol, 2014 34 (2): 118-128]
8 Hasunuma T, Sanda T, Yamada R, Yoshimura K, Ishii J, Kondo A. Matabolic pathway engineering based on metabolomics confers acetic and formic acid tolerance to a recombinant xylose-fermenting strain of Saccharomyces cerevisiae [J]. Microb Cell Fact, 2011, 10 (1): 2-13
9 Lee H, Haeng DH, Kim YH, Shin SJ, Kim SB, Han SO, Lee J, Kim SW, Park C. Tolerance of Saccharomyces cerevisiae K35 to lignocellulose-derived inhibitory compounds [J]. Biotechnol Bioproc E, 2011, 16: 755-760
10 Fujitomi K, Sanda T, Hasunuma T, Kondo A. Deletion of PHO13 gene in the presence of acetic and formic acids, and furfural [J]. Bioresour Technol, 2012, 111: 161-166
11 Garay-Arroyo A, Covarrubias AA, Clark I, Ni?o I, Gosset G, Martinez A. Response to different environmental stress conditions of industrial and laboratory Saccharomyces cerevisiae strains [J]. Appl Microbiol Biotechnol, 2004, 63 (6): 734-741
12 Cai Z, Zhang B, Li Y. Engineering Saccharomyces cerevisiae for efficient anaerobic xylose fermentation: reflections and perspectives [J]. Biotechnol J, 2012, 7: 34-36
13 Kida K, Kume K, Morinura S, Morimura S, Sonoda Y. Repeated-batch fermentation process using a thermotolerant flocculating yeast constructed by protoplast fusion [J]. J Ferment Bioeng, 1992, 74 (3): 169-173
14 Tang YQ, Koike Y, Liu K, An MZ, Morimura S, Wu XL, Kida K. Ethanol production from kitchen waste using the ?occulating yeast Saccharomyces cerevisiae strain KF-7 [J]. Biomass Bioenergy, 2008, 32 (11): 1037-1045
15 Sun ZY, Tang YQ, Iwanaga T, Sho T, Kida K .Production of fuel ethanol from bamboo by concentrated sulfuric acid hydrolysis followed by continuous ethanol fermentation [J]. Bioresourc Technol, 2011, 102 (23): 10929-10935
16 周利, 汤岳琴, 孙照勇, 木田建次. 基于连续发酵驯化的高耐盐性酿酒酵母的育种[J]. 应用与环境生物学报, 2014, 20 (3): 363-370 [Zhou L, Tang YQ, Sun ZY, Kida K. Breeding of high salt-tolerant Saccharomyces cerevisiae strains based on continuous ethanol fermentation [J]. Chin J Appl Environ Biol, 2014, 20 (3): 363-370]
17 Wang G, Tan L, Sun ZY, Gou ZX, Tang YQ, Kida K. Production of bioethanol from rice straw by simultaneous saccharification and fermentation of whole pretreated slurry using Saccharomyces cerevisiae KF-7 [J]. Environ Progr Sustain, 2014, 10.1002/ep.11992
18 李洪兴, 张笑然, 沈煜, 董永胜, 鲍晓明. 纤维素乙醇生物加工过程中的抑制物对酿酒酵母的影响及应对措施[J]. 生物工程学报, 2009, 25 (9): 1321-1328 [Li HX, Zhang XR, Shen Y, Dong YS, Bao XM. Inhibitors and their effects on Saccharomyces cerevisiae and relevant countermeasures in bioprocess of ethanol production from lignocellulose - a review [J]. Chin J Biotech, 2009, 25 (9): 1321-1328]
19 徐桂红, 赵心清, 李宁, 白凤武. 锌离子提高絮凝酵母乙酸胁迫耐受性[J]. 化工学报, 2012, 63 (6): 1823-1829 [Xu GH, Zhao XQ, Li N, Bai FW. Improvement of acetic acid tolerance of self-flocculating yeast by zinc supplementation [J]. CIESC J, 2012, 63 (6): 1823-1829]
20 杨培周, 郑志, 罗水忠, 姜绍通, 陈淼林, 高书蕊. 酿酒酵母和嗜鞣管囊酵母对稀酸水解抑制物的耐受性[J]. 农业机械学报, 2012, 43 (4): 88-92 [Yang PZ, Zhen Z, Luo SZ, Jiang ST, Chen ML, Gao SR. Tolerance of Saccharomyces cerevisiae and Pachysolen tannophilus to diluted acid hydrolysis inhibitor [J]. Trans Chin Soc Agric Mach, 2012, 43 (4): 88-92]
21 Fitzgerald DJ, Stratford M, Narbad A. Analysis of the inhibition of food spoilage yeasts by vanillin [J]. Int J Food Microbiol, 2003, 86 (1-2): 113-122
22 Landaeta R, Aroca G, Acevedo F, Teixeira JA, Mussatto SI.. Adaption of a flocculent Saccharomyces cerevisiae strain to lignocellulosic inhibitors by cell recycle batch fermentation [J]. Appl Energy, 2013, 102: 124-130
23 Heer D, Sauer U. Identification of furfural as a key toxin in lignocellulosic hydrolysates and evolution of a tolerant yeast strain [J]. Microb Biotechnol, 2008, 1 (6): 497-506

相似文献/References:

[1]李科,靳艳玲,甘明哲,等.木质纤维素生产燃料乙醇的关键技术研究现状[J].应用与环境生物学报,2008,14(06):877.[doi:10.3724/SP.J.1145.2008.00877]
 LI Ke,JIN Yanling,et al.Progress in Research of Key Techniques for Ethanol Production from Lignocellulose[J].Chinese Journal of Applied & Environmental Biology,2008,14(02):877.[doi:10.3724/SP.J.1145.2008.00877]
[2]靳艳玲,甘明哲,周玲玲,等.4个甘薯品种不同生育期的乙醇发酵比较[J].应用与环境生物学报,2009,15(02):262.[doi:10.3724/SP.J.1145.2009.00267]
 JIN Yanling,GAN Mingzhe,et al.Ethanol Production with 4 Varieties of Sweet Potato at Different Growth Stages[J].Chinese Journal of Applied & Environmental Biology,2009,15(02):262.[doi:10.3724/SP.J.1145.2009.00267]
[3]杨俊仕,周后珍,李国欣,等.组合工艺处理甘薯燃料乙醇糟液[J].应用与环境生物学报,2010,16(05):730.[doi:10.3724/SP.J.1145.2010.00730]
 YANG Junshi,ZHOU Houzhen,LI Guoxin,et al.Treatment of Wastewater from Alcohol Fuel Production with Sweet Potato by Combined Process[J].Chinese Journal of Applied & Environmental Biology,2010,16(02):730.[doi:10.3724/SP.J.1145.2010.00730]
[4]张良,靳艳玲,陈谦,等.耐高温酵母高浓度发酵生产燃料乙醇工艺优化[J].应用与环境生物学报,2011,17(03):311.[doi:10.3724/SP.J.1145.2011.00311]
 ZHANG Liang,JIN Yanlin,CHEN Qian,et al.Optimization of Ethanol Production by Thermotolerant and High Alcohol-producing Yeast Using Response Surface Analysis[J].Chinese Journal of Applied & Environmental Biology,2011,17(02):311.[doi:10.3724/SP.J.1145.2011.00311]
[5]黄玉红,靳艳玲,赵云,等.鲜甘薯发酵生产燃料乙醇中的降粘工艺[J].应用与环境生物学报,2012,18(04):661.[doi:10.3724/SP.J.1145.2012.00661]
 HUANG Yuhong,JIN Yanling,ZHAO Yun,et al.Viscosity Reduction During Fuel Ethanol Production by Fresh Sweet Potato Fermentation[J].Chinese Journal of Applied & Environmental Biology,2012,18(02):661.[doi:10.3724/SP.J.1145.2012.00661]
[6]黄玉红,靳艳玲,方扬,等.细胞壁多糖水解酶及其在非粮生物质原料转化中的应用研究进展[J].应用与环境生物学报,2013,19(05):881.[doi:10.3724/SP.J.1145.2013.00881]
 HUANG Yuhong,JIN Yanling,FANG Yang,et al.Application and Progress of Plant Cell Wall Polysaccharide Hydrolase in Non-food Based Biomass Conversation[J].Chinese Journal of Applied & Environmental Biology,2013,19(02):881.[doi:10.3724/SP.J.1145.2013.00881]
[7]谭芙蓉,吴波,代立春,等.纤维素类草本能源植物的研究现状[J].应用与环境生物学报,2014,20(01):162.[doi:10.3724/SP.J.1145.2014.00162]
 TAN Furong,WU Bo,DAI Lichun,et al.Research and prospect of cellulosic herbaceous energy plant[J].Chinese Journal of Applied & Environmental Biology,2014,20(02):162.[doi:10.3724/SP.J.1145.2014.00162]
[8]周利,汤岳琴,孙照勇,等.基于连续发酵驯化的高耐盐性酿酒酵母的育种[J].应用与环境生物学报,2014,20(03):360.[doi:10.3724/SP.J.1145.2014.11032]
 ZHOU Li,TANG Yueqin,SUN Zhaoyong,et al.Breeding of high salt-tolerant Saccharomyces cerevisiae strains based on continuous ethanol fermentation[J].Chinese Journal of Applied & Environmental Biology,2014,20(02):360.[doi:10.3724/SP.J.1145.2014.11032]

备注/Memo

备注/Memo:
国家自然科学基金项目(31170093)资助 Supported by the National Natural Science Foundation of China (31170093)
更新日期/Last Update: 2015-04-27