|本期目录/Table of Contents|

 SHUI Zongxia,QIN Han,Wu Bo,et al.From raw materials to products: research progress in bio-based succinic acid[J].Chinese Journal of Applied & Environmental Biology,2015,21(01):10-21.[doi:10.3724/SP.J.1145.2014.07024]





From raw materials to products: research progress in bio-based succinic acid
税宗霞 秦晗 吴波 谭芙蓉 王景丽 何明雄
1农业部沼气科学研究所,生物质能技术研究中心 成都 610041 2农业部农村可再生能源开发与利用重点实验室 成都 610041
SHUI Zongxia QIN Han Wu Bo TAN Furong WANG Jingli HE Mingxiong
1Biomass Energy Technology Research Centre, Biogas Institute of Ministry of Agriculture, Chengdu 610041, China 2Key Laboratory of Development and Application of Rural Renewable Energy, Ministry of Agriculture, Chengdu 610041, China
succinic acid metabolic engineering ARTPgenome shuffling in situ separation
丁二酸作为一种重要的有机化工原料及中间体,广泛用于生物高分子、食品与医药等行业,市场潜在需求量巨大;同时作为一种优秀的C4平台化合物,被认为是未来12种最具发展前景的生物炼制产品之一. 近年来随着石化资源的日益枯竭及环境污染问题的日益严峻,以生物质为原料生产丁二酸等生物基产品的研究备受国内外研究者的关注. 本文从产丁二酸菌种的种类及常见菌株产丁二酸的代谢途径、产丁二酸工程菌的改造、丁二酸发酵过程控制与优化、丁二酸的分离提取工艺等4个方面综述近年来国内外生物基丁二酸研究进展,其中以产丁二酸工程菌的改造为重点展开详细阐述. 为提高菌株产丁二酸的能力,研究者们常采用代谢工程技术改造菌株,皆取得显著效果. 近来也出现了利用ARTP法和基因组重排技术选育高产丁二酸的菌株. 此外,高效的丁二酸发酵与其发酵原料,发酵过程中相关控制因素如pH、CO2和H2浓度以及发酵方式密切相关;相比其他的丁二酸分离法,原位分离法回收丁二酸具备优势. 最后对产丁二酸菌种的改造进行展望,认为利用适应性进化和最小基因组等技术筛选优良丁二酸生产菌是未来的趋势.
Succinic acid is regarded as an organic chemical raw material and intermediate, which has huge potentials in biopolymer, food, and medicine applications. Meanwhile, succinic acid is an excellent C4 platform chemical and has been evaluated to be one of the top 12 value-added chemicals from biomass by the US Department of Energy. In recent years, with the increasing depletion of fossil resources and other environmental pollution problems, researchers paid more and more attention on production of succinic acid from biomass feedstocks. This article reviews the recent research progress on the production of succinic acid by microbial fermentation, including the species and metabolic pathways of the main succinic-acid-producing microbes, the progress of genetic engineering strategy and metabolic engineering technology for construction of succinic acid producing strains, the fermentation process control and optimization, and extraction process of succinic acid, with emphasis on the second part. In order to improve the ability of the strains to produce succinic acid, researchers genetically engineered these strains and made some achievements so far. Recently, APTR and genome shuffling are also used to breed succinic acid producing strains. In addition, efficient production of succinic acid is closely related to the raw materials and relevant control factors such as pH, the concentration of H2 and CO2, as well as fermentative modes. Among the succinic acid production methods in situ separation has significant superiority in extracting succinic. Finally, this paper also forecasts achieving a cost-effective process for bio-succinic acid production, and?a?trend?to screen excellent succinic acid producing strains by adaptive evolutionary and minimal genome technology in the future.


1 Lang A, Kopetz H, Parker A. Australia: biomass energy holds big promise [J]. Nature, 2012, 488 (7413): 590-591
2 Werpy T, Petersen G, Aden A, Bozell J, Holladay J, White J, Manheim A, Eliot D, Lasure L, Jones S. Top value added chemicals from biomass. Volume 1-results of screening for potential Candidates from sugars and synthesis gas [R]. Richland Washington:Pacific Northwest National Laboratory, 2004
3 Cheng KK, Zhao XB, Zeng J, Zhang JA. Biotechnological production of succinic acid: current state and perspectives [J]. Biofuels Bioprod Biorefining, 2012, 6 (3): 302-318
4 Succinic acid market for 1,4-BDO, resin, coatings, dyes & inks, pharmaceutical, polyurethane, food, plasticizers, cosmetics, solvents & lubricants and de-icing solutions applications - global industry analysis, size, share, growth. trends and forecast, 2012 - 2018 [R]. 2013
5 Litsanov B, Brocker M, Oldiges M, Bott M. Succinic acid [M]. Bioprocessing of Renewable Resources to Commodity Bioproducts, 2014: 435-472
6 张洪勋, 罗海峰, 庄绪亮. 琥珀酸发酵研究进展[J]. 微生物学通报, 2003, 30 (5): 102-106 [Zhang HX, Luo HF, Zhuang XL. Research process in production of succinic acid by fermentation [J]. Microbiology, 2003, 30 (5): 102-106]
7 郑璞, 周威, 倪晔, 姜岷, 韦萍, 孙志浩. 环境因素对琥珀酸放线杆菌Actinobacillus succinogenes CGMCC 1593发酵生产丁二酸的影响[J]. 生物工程学报, 2008, 24 (6): 1051-1055 [Zheng P, Zhou W, Ni Y, Jiang M, Wei P, Sun ZH. Environmental factors affecting the succinic acid production by Actinobacillus succinogenes CGMCC 1593 [J]. Chin J Biotechnol, 2008, 24 (6): 1051-1055]
8 Zeikus J, Jain M, Elankovan P. Biotechnology of succinic acid production and markets for derived industrial products [J]. Appl Microbiol Biotechnol, 1999, 51 (5): 545-552
9 Hatti-Kaul R, T?rnvall U, Gustafsson L, B?rjesson P. Industrial biotechnology for the production of bio-based chemicals a cradle-to-grave perspective [J]. Trends Biotechnol, 2007, 25 (3): 119-124
10 Kamm B, Kamm M. Principles of biorefineries [J]. Appl Microbiol Biotechnol, 2004, 64 (2): 137-145
11 Beauprez JJ, Mey M De, Soetaert WK. Microbial succinic acid production: natural versus metabolic engineered producers [J]. Process Biochem, 2010, 45 (7): 1103-1114
12 Guettler MV, Rumler D, Jain MK. Actinobacillus succinogenes sp. nov., a novel succinic-acid-producing strain from the bovine rumen [J]. Int J Syst bacteriol, 1999, 49 (1): 207-216
13 Rifkin GD, Opdyke JE. Anaerobiospirillum succiniciproducens septicemia [J]. J Clin Microbiol, 1981, 13 (5): 811
14 Lee P, Lee S, Hong S, Chang H. Isolation and characterization of a new succinic acid-producing bacterium, Mannheimia succiniciproducens MBEL55E, from bovine rumen [J]. Appl Microbiol Biotechnol, 2002, 58 (5): 663-668
15 Song H, Lee SY. Production of succinic acid by bacterial fermentation [J]. Enzyme Microb Technol, 2006, 39 (3): 352-361
16 Samuelov N, Lamed R, Lowe S, Zeikus J. Influence of CO2-HCO3? levels and pH on growth, succinate production, and enzyme activities of Anaerobiospirillum succiniciproducens [J]. Appl Environ Microbiol, 1991, 57 (10): 3013-3019
17 王庆昭, 赵学明. 琥珀酸发酵菌种研究进展[J]. 生物工程学报, 2007, 23 (4): 570-576 [Wang QZ, Zhao XM. The research progress of succinic acid fermentation strains [J]. Chin J Biotech, 2007, 23 (4): 570-576]
18 Wendisch VF, Bott M, Eikmanns BJ. Metabolic engineering of Escherichia coli and Corynebacterium glutamicum for biotechnological production of organic acids and amino acids [J]. Curr Opin Microbiol, 2006, 9 (3): 268-274
19 Dominguez H, Nezondet C, Lindley N, Cocaign M. Modified carbon flux during oxygen limited growth of Corynebacterium glutamicum and the consequences for amino acid overproduction [J]. Biotechnol Lett , 1993, 15 (5): 449-454
20 Arikawa Y, Kuroyanagi T, Shimosaka M, Muratsubaki H, Enomoto K, Kodaira R, Okazaki M. Effect of gene disruptions of the TCA cycle on production of succinic acid in Saccharomyces cerevisiae [J]. J Biosci Bioeng, 1999, 87 (1): 28-36
21 Raab AM, Gebhardt G, Bolotina N, Weuster Botz D, Lang C. Metabolic engineering of Saccharomyces cerevisiae for the biotechnological production of succinic acid [J]. Metab Eng, 2010, 12 (6): 518-525
22 Otero JM, Cimini D, Patil KR, Poulsen SG, Olsson L, Nielsen J. Industrial systems biology of Saccharomyces cerevisiae enables novel succinic acid cell factory [J]. PloS ONE, 2013, 8 (1): e54144
23 Ito Y, Hirasawa T, Shimizu H. Metabolic engineering of Saccharomyces cerevisiae to improve succinic acid production based on metabolic profiling. Biosci Biotechnol Biochem, 2014, 78 (1): 151-159
24 Yan D, Wang C, Zhou J, Liu Y, Yang M, Xing J. Construction of reductive pathway in Saccharomyces cerevisiae for effective succinic acid fermentation at low pH value. Bioresour Technol, 2014, 156: 232-239
25 Agren R, Otero JM, Nielsen J. Genome-scale modeling enables metabolic engineering of Saccharomyces cerevisiae for succinic acid production [J]. J Ind Microbiol Biotechnol, 2013, 40 (7): 735-747
26 Raab AM, Lang C. Oxidative versus reductive succinic acid production in the yeast Saccharomyces cerevisiae [J]. Bioeng Bugs, 2011, 2 (2): 120-123
27 Lee KY, Park JM, Kim TY, Yun H, Lee SY. The genome-scale metabolic network analysis of Zymomonas mobilis ZM4 explains physiological features and suggests ethanol and succinic acid production strategies [J]. Microb Cell Fact, 2010, 9 (1): 94
28 Seo JS, Chong HY, Kim JH, Kim JY. Method for mass production of primary metabolites, strain for mass production of primary metabolites, and method for preparation thereof: US, 20090162910A1 [P]. 2009-06-25
29 Bryant MP, Small N. Characteristics of two new genera of anaerobic curved rods isolated from the rumen of cattle [J]. J Bacteriol, 1956, 72 (1): 22
30 Rotstein OD, Wells CL, Pruett TL, Sorenson JJ, Simmons RL. Succinic acid production by Bacteroides fragilis: a potential bacterial virulence factor [J]. Arch Surgery, 1987, 122 (1): 93-98
31 武敏敏, 刘宏娟, 张建安, 薛建伟, 李晋平. 发酵法生产丁二酸研究进展及其应用前景[J]. 现代化工, 2008, 28 (11): 33-37 [Wu MM, Liu HJ, Zhang JA, Xue JW, Li JP. Research advances in microbiol fermentation of succinic acid and its prospect [J]. Mod Chem Ind, 2008, 28 (11): 33-37]
32 张玉秀, 张云剑, 李强. 产琥珀酸放线杆菌发酵生产琥珀酸的研究进展[J]. 中国生物工程杂志, 2008, 28 (12): 102-106 [Zhang YX, Zhang YJ, Li Q. Research progress in succinic acid fermentation of Actinobacillus succinogenes [J]. China Biotechnol, 2008, 28 (12): 102-106]
33 McKinlay JB, Shachar-Hill Y, Zeikus JG, Vieille C. Determining Actinobacillus succinogenes metabolic pathways and fluxes by NMR and GC-MS analyses of 13C-labeled metabolic product isotopomers [J]. Metab Eng, 2007, 9 (2): 177-192
34 Jantama K, Haupt M, Svoronos SA, Zhang X, Moore J, Shanmugam K, Ingram L. Combining metabolic engineering and metabolic evolution to develop nonrecombinant strains of Escherichia coli C that produce succinate and malate [J]. Biotechnol Bioeng, 2008, 99 (5): 1140-1153
35 Chatterjee R, Millard CS, Champion K, Clark DP, Donnelly MI. Mutation of the ptsG gene results in increased production of succinate in fermentation of glucose by Escherichia coli [J]. Appl Environ Microbiol, 2001, 67 (1): 148-154
36 Andersson C, Hodge D, Berglund KA, Rova U. Effect of different carbon sources on the production of succinic acid using metabolically engineered Escherichia coli [J]. Biotechnol Progr, 2007, 23 (2): 381-388
37 Jantama K, Zhang X, Moore J, Shanmugam K, Svoronos S, Ingram L. Eliminating side products and increasing succinate yields in engineered strains of Escherichia coli C [J]. Biotechnol Bioeng, 2008, 101 (5): 881-893
38 Sánchez AM, Bennett GN, San KY. Novel pathway engineering design of the anaerobic central metabolic pathway in Escherichia coli to increase succinate yield and productivity [J]. Metab Eng, 2005, 7 (3): 229-239
39 Lin H, Bennett GN, San KY. Metabolic engineering of aerobic succinate production systems in Escherichia coli to improve process productivity and achieve the maximum theoretical succinate yield [J]. Metab Eng, 2005, 7 (2): 116-127
40 Lin H, Bennett GN, San KY. Chemostat culture characterization of Escherichia coli mutant strains metabolically engineered for aerobic succinate production: a study of the modified metabolic network based on metabolite profile, enzyme activity, and gene expression profile [J]. Metab Eng, 2005, 7 (5): 337-352
41 Lee SJ, Song H, Lee SY. Genome-based metabolic engineering of Mannheimia succiniciproducens for succinic acid production [J]. Appl Environ Microbiol, 2006, 72 (3): 1939-1948
42 刘学胜, 贾全栋, 张伟国. 产丁二酸谷氨酸棒状杆菌基因缺失代谢工程菌株的构建[J]. 微生物学通报, 2013, 40 (5): 739-748 [Liu XS, Jia QD, Zhang WG.Construction a metabolic engineering strain to produce succinic acid from Corynebacterium glutamicum by gene deletion mutation [J]. Microbiology, 2013, 40 (5): 739-748]
43 何明雄, 祝其丽, 潘科, 胡启春. 利用木质纤维素类生物质发酵生产乙醇重组菌株研究进展[J]. 应用与环境生物学报, 2009, 15 (4): 579-579 [He MX, Zhu QL, Pan K, Hu QC. Progress in ethanol production with lignocellulosic biomass by different recombinant strains [J]. Chin J Appl Environ Biol, 2009, 15 (4): 579-579]
44 He MX, Wu B, Qin H, Ruan ZY, Tan FR, Wang JL, Shui ZX, Dai LC, Zhu QL, Pan K. Zymomonas mobilis: a novel platform for future biorefineries [J]. Biotechnol Biofuels, 2014, 7 (1): 101
45 Seo JS, Chong H, Park HS, Yoon KO, Jung C, Kim JJ, Hong JH, Kim H, Kim JH, Kil JI. The genome sequence of the ethanologenic bacterium Zymomonas mobilis ZM4 [J]. Nat Biotechnol, 2004, 23 (1): 63-68
46 Kim JY, Kim JH, Chong H. Development of succinic acid producing zymomonas mobilis strain [C]. Nashville: Abstract 28th Symp Biotechnol for Fuels and Chemicals, 2006
47 Goldberg I, Lonberg-Holm K, Bagley E, Stieglitz B. Improved conversion of fumarate to succinate by Escherichia coli strains amplified for fumarate reductase [J]. Appl Environ Microbiol, 1983, 45 (6): 1838-1847
48 Gokarn R, Eiteman M, Altman E. Expression of pyruvate carboxylase enhances succinate production in Escherichia coli without affecting glucose uptake [J]. Biotechnol Lett, 1998, 20 (8): 795-798
49 Liang LY, Liu RM, Ma JF, Chen KQ, Jiang M, Wei P. Increased production of succinic acid in Escherichia coli by overexpression of malate dehydrogenase [J]. Biotechnol lett, 2011, 33 (12): 2439-2444
50 Yamauchi Y, Hirasawa T, Nishii M, Furusawa C, Shimizu H. Enhanced acetic acid and succinic acid production under microaerobic conditions by Corynebacterium glutamicum harboring Escherichia coli transhydrogenase gene pntAB [J]. J Gen Appl Microbiol, 2014, 60 (3): 112-118
51 曹剑磊, 周丽, 张梁, 王正祥,石贵阳. 产琥珀酸重组大肠杆菌的构建和发酵性能[J]. 应用与环境生物学报, 2010, 16 (6): 851-857 [Cao JL, Zhou L, Zhang L, Wang ZX, Shi GY. Construction and fermentation of succinate-producing recombinant Escherichia coli [J]. Chin J Appl Environ Biol, 2010, 16 (6): 851-857]
52 王丹, 毛雨, 马兰, 李强, 李望良, 邢建民, 苏志国. 乳糖诱导丙酮酸羧化酶基因在大肠杆菌中的表达及对丁二酸产量的影响[J]. 生物工程学报, 2009, 25 (9): 1338-1344 [Wang D, Mao Y, Ma L, Li Q, Li WL, Xing JM, Su ZG. Expression of heterogenous pyruvate carboxylase in Escherichia coli with lactose as inducer and its effect on succinate production [J]. Chin J Biotech, 2009, 25 (9): 1338-1344]
53 岳方方, 姜岷, 马江锋, 于丽, 刘树文, 韦萍. 产琥珀酸大肠杆菌工程菌株的构建[J]. 中国酿造, 2010, 29 (2): 25-29 [Yue FF, Jiang M, Ma JF, Yu L, Liu SW, Wei P. Construction of engineered Escherichia coli for succinate producition [J]. China Brewing, 2010, 29 (2): 25-29]
54 Okino S, Noburyu R, Suda M, Jojima T, Inui M, Yukawa H. An efficient succinic acid production process in a metabolically engineered Corynebacterium glutamicum strain [J]. Appl Microbiol Biotechnol, 2008, 81 (3): 459-464
55 刘嵘明, 马江锋, 梁丽亚, 徐冰, 王光明, 张敏, 姜岷. 过量表达烟酸转磷酸核糖激酶对大肠杆菌NZN111 产丁二酸的影响[J]. 生物工程学报, 2011, 27 (10): 1438-1447 [Liu RM, Ma JF, Liang LY, Xu B,Wang GM, Zhang M, Jiang M. Effect of overexpression of nicotinic acid phosphoribosyl transferase on succinic acid production in Escherichia coli NZN111 [J]. Chin J Biotech, 2011, 27 (10): 1438-1447]
56 王丹, 张静, 张晶, 王玉华. 耐酸性高产琥珀酸放线杆菌的诱变选育[J]. 食品科技, 2012 (8): 18-21 [Wang D, Zhang J, Zhang J, Wang YH.Mutagenesis breeding of Actinobacillus succinogenes for aciduric and high-producing [J]. Food Sci Technol, 2012 (8): 18-21]
57 刘璇, 郑璞, 倪晔, 董晋军, 孙志浩. 基因组改组技术选育耐酸性琥珀酸放线杆菌[J]. 微生物学通报, 2009, 36 (11): 1676-1681 [Liu X, Zheng P, Ni Y, Dong JJ, Sun ZH. Breeding Actinobacillus succinogenes with Acid-tolerance by genome shuffling [J]. Microbiology, 2009, 36 (11): 1676-1681
58 陈晓晖. 琥珀酸产生菌的分离鉴定、诱变选育及发酵条件优化[D]. 安徽: 合肥工业大学, 2007 [Chen XH. Isolation, Identification, mutation breeding and fermentation condition optimization of a strain for producing succinic acid [D]. Anhui: Hefei University of Technology, 2007]
59 万青, 曹伟佳, 张常青, 刘嵘明, 梁丽亚, 陈可泉, 马江锋, 姜岷. 常压室温等离子体诱变高效利用木糖产丁二酸菌株[J]. 生物工程学报, 2013, 29 (11): 1692-1695 [Wan Q, Cao WJ, Zhang CQ, Liu RM, Liang LY, Chen KQ, Ma JF, Jiang M. Mutating Escherichia coli by atmospheric and room temperature plasmas for succinic acid production from xylose [J]. Chin J Biotechnol, 2013, 29 (11): 1692-1695
60 Jiang M, Wan Q, Liu R, Liang L, Chen X, Wu M, Zhang H, Chen K, Ma J, Wei P. Succinic acid production from corn stalk hydrolysate in an E. coli mutant generated by atmospheric and room-temperature plasmas and metabolic evolution strategies [J]. J Ind Microbiol Biotechnol, 2014, 41 (1): 115-123
61 Zheng P, Zhang K, Yan Q, Xu Y, Sun Z. Enhanced succinic acid production by Actinobacillus succinogenes after genome shuffling [J]. J ind Microbiol Biotechnol, 2013, 40 (8): 831-840
62 刘嵘明, 梁丽亚, 吴明科, 姜岷. 微生物发酵生产丁二酸研究进展[J]. 生物工程学报, 2013, 29 (10): 1386-1397 [Liu RM, Liang LY, WU MK, Jiang M. Progress in microbial production of succinic acid [J]. Chin J Biotech, 2013, 29 (10): 1386-1397]
63 Liu YP, Zheng P, SuZH n, Ni Y, Dong JJ, Zhu LL. Economical succinic acid production from cane molasses by Actinobacillus succinogenes [J]. Bioresour Technol, 2008, 99 (6): 1736-1742
64 Borges ER, Pereira Jr N. Succinic acid production from sugarcane bagasse hemicellulose hydrolysate by Actinobacillus succinogenes [J]. J ind Microbiol Biotechnol, 2011, 38 (8): 1001-1011
65 Zheng P, Fang L, Xu Y, Dong JJ, Ni Y, Sun ZH. Succinic acid production from corn stover by simultaneous saccharification and fermentation using Actinobacillus succinogenes [J]. Bioresour Technol, 2010, 101 (20): 7889-7894
66 Li X, Zheng Z, Wei Z, Jiang S, Pan L, Weng S. Screening, breeding and metabolic modulating of a strain producing succinic acid with corn straw hydrolyte [J]. World J Microbiol Biotechnol, 2009, 25 (4): 667-677
67 Yu J, Li Z, Ye Q, Yang Y, Chen S. Development of succinic acid production from corncob hydrolysate by Actinobacillus succinogenes [J]. J Ind Microbiol Biotechnol, 2010, 37 (10): 1033-1040
68 Chen C, S Ding, D Wang, Z Li,Q Ye. Simultaneous saccharification and fermentation of cassava to succinic acid by Escherichia coli NZN111 [J]. Bioresour Technol, 2014, 163: 100-105
69 Zheng P, Dong JJ, Sun ZH, Ni Y, Fang L. Fermentative production of succinic acid from straw hydrolysate by Actinobacillus succinogenes [J]. Bioresour Technol, 2009, 100 (8): 2425-2429
70 Li Q, Siles JA, Thompson IP. Succinic acid production from orange peel and wheat straw by batch fermentations of Fibrobacter succinogenes S85 [J]. Appl Microbiol Biotechnol, 2010, 88 (3): 671-678
71 Akhtar J, Idris A, Aziz RA. Recent advances in production of succinic acid from lignocellulosic biomass [J]. Appl Microbiol Biotechnol, 2014, 98 (3): 987-1000
72 Lin H, San KY, Bennett GN. Effect of Sorghum vulgare phosphoenolpyruvate carboxylase and Lactococcus lactis pyruvate carboxylase coexpression on succinate production in mutant strains of Escherichia coli [J]. Appl Microbiol Biotechnol, 2005, 67 (4): 515-523
73 Oh IJ, Lee HW, Park CH, Lee SY, Lee J. Succinic acid production by continuous fermentation process using Mannheimia succiniciproducens LPK7 [J]. J Microbiol Biotechnol, 2008, 18 (5): 908-912
74 Wang D, Li Q, Mao Y, Xing J, Su Z. High-level succinic acid production and yield by lactose-induced expression of phosphoenolpyruvate carboxylase in ptsG mutant Escherichia coli [J]. Appl Microbiol Biotechnol, 2010, 87 (6): 2025-2035
75 McKinlay JB, Zeikus JG, Vieille C. Insights into Actinobacillus succinogenes fermentative metabolism in a chemically defined growth medium [J]. Appl Environ Microbiol, 2005, 71 (11): 6651-6656
76 奚永兰, 陈可泉, 李建, 马江锋, 隋姗姗, 叶贵子, 姜岷. 琥珀酸发酵过程中固定CO2的研究进展[J]. 化工进展, 2010, 29 (7): 1314-1319 [Xi YL, Chen KQ, Li J, Ma JF, Sui SS, Ye GZ, Jiang M. Progress of CO2 fixation in succinic acid fermentation process [J]. Chem Indu Eng Prog, 2010, 29 (7): 1314-1319]
77 Lee PC, Lee WG, Kwon S, Lee SY, Chang HN. Succinic acid production by Anaerobiospirillum succiniciproducens: effects of the H2/CO2 supply and glucose concentration [J]. Enzyme MicrobTechnol, 1999, 24 (8): 549-554
78 Donnelly MI, Stols L. Production of succinic acid through overexpression of NAD+-dependent malic enzyme in an [J]. Appl Environ Microbiol, 1997, 63 (7): 2695-2701
79 Vemuri G, Eiteman M, Altman E. Effects of growth mode and pyruvate carboxylase on succinic acid production by metabolically engineered strains of Escherichia coli [J]. Appl Environ Microbiol, 2002, 68 (4): 1715-1727
80 叶小金, 王红蕾, 徐洪章, 薛冬桦. 玉米秸秆糖醇发酵产丁二酸及表征[J]. 食品科学, 2014, 35 (23): 161-165 [Ye XJ, Wang HL, Xu HZ, Xue H. Fermentation and characterization of succinic acid by corn stover sugar alcohol [J]. Food Sci, 2014, 35 (23): 161-165]
81 孔德城, 郑璞, 董晋军, 倪晔, 孙志浩. 碱预处理秸秆同步糖化发酵生产丁二酸[J]. 食品与发酵工业, 2012, 37 (10): 1-5 [Kong DC, Zheng P, Dong JJ, Ni Y, Sun ZH. Succinic acid production from alkali pretreated stalk by simultaneous saccharification and fermentation [J]. Food Ferment Ind, 2012, 37 (10): 1-5]
82 Chen KQ, Li J, Ma JF, Jiang M, Wei P, Liu ZM, Ying HJ. Succinic acid production by Actinobacillus succinogenes using hydrolysates of spent yeast cells and corn fiber [J]. Bioresour Technol, 2011, 102 (2): 1704-1708
83 Chen K, Jiang M, Wei P, Yao J, Wu H. Succinic acid production from acid hydrolysate of corn fiber by Actinobacillus succinogenes [J]. Appl Biochem Biotechnol, 2010, 160 (2): 477-485
84 方林. 玉米秸秆原料发酵生产丁二酸工艺研究[D]. 无锡: 江南大学, 2009 [Fang L. Studies on the fermentative production of succinic acid from corn stalk [D]. Wuxi: Jiangnan University, 2009 ]
85 Li J, Zheng XY, Fang XJ, Liu SW, Chen KQ, Jiang M, Wei P, Ouyang PK. A complete industrial system for economical succinic acid production by Actinobacillus succinogenes [J]. Bioresour Technol, 2011, 102 (10): 6147-6152
86 吴昊, 姚嘉旻, 刘宗敏, 陈可泉, 左鹏, 姜岷, 韦萍. 玉米籽皮稀酸水解液脱毒发酵制备丁二酸的可行性[J]. 农业工程学报, 2009, 25 (2): 264-272 [Wu H,Yao JM, Liu ZM, Chen KQ, Zuo P, Jiang M, Wei P. Feasibility for producing succinic acid by fermentation of cornhusk dilute acid hydrolysate after detoxification [J]. Transactions CSAE, 2009, 25 (2): 264-272 ]
87 姜岷, 姚嘉旻, 吴昊, 万永敏, 陈可泉, 孙娜娅, 于丽. 稀酸水解玉米皮制备丁二酸发酵糖液的研究[J]. 食品与发酵工业, 2008, 33 (10): 6-9 [Jiang M, Yao JM, Wu H, Wan YM, Chen KQ, Sun NY, Yu L. Preparation of saccharifying liquid for succinic acid by fermentation from cornhusks sulphuric acid hydrolysis [J]. Food Ferment Ind, 2008, 33 (10): 6-9]
88 申乃坤, 王青艳, 秦艳, 廖思明, 朱婧, 朱绮霞, 米慧芝, 黄日波. 木薯粉同步糖化发酵(SSF)产丁二酸[J]. 微生物学通报, 2014, 41 (8): 1507-1515 [Shen NK, Wang QY, Qin Y, Liao SM, Zhu J, Zhu QX, Mi HZ, Huang RB. Succinic acid fermentation by simultaneous saccharification and fermentation (SSF) with cassava flour [J]. Microbiology, 2014, 41 (8): 1507-1515
89 周小兵, 郑璞. 以白酒酒糟为原料发酵产丁二酸[J]. 食品与发酵工业, 2013 (2): 7-10 [Zhou XB, Wang QY, Qin Y, Liao SM, Zhu J, Zhu QX, Mi HZ, Huang RB. Fermentative production of succinic acid from spirit-based distillers’grains [J]. Food Ferment Ind, 2013 (2): 7-10]
90 姜岷, 王倩楠, 陈可泉, 韦萍. 啤酒废酵母酶解液作为有机氮源厌氧发酵制备丁二酸的研究[J]. 食品科技, 2007, 32 (10): 238-242 [Jiang M, Wang QN, Chen KQ, Wei P. Research on the production of succinic acid by anaerobic fermentation with yeast zymolys is solution as organic nitrogen source [J]. Food Sci Technol, 2007, 32 (10): 238-242]
91 张九花, 奚永兰, 徐蓉, 戴文宇, 陈可泉, 姜岷. 利用甘蔗糖蜜与乳清粉厌氧发酵制备丁二酸[J]. 化工进展, 2012, 31 (12): 2756-2760 [Zhang JH, Xi YL, Xu R, Dai WY, Chen KQ, Jiang M. Preparation of succinic acid using sugarcane molasses and whey powder [J]. Chem Ind Eng Prog, 2012, 31 (12): 2756-2760]
92 董晋军, 郑璞, 倪晔, 孙志浩. 菊芋原料同步糖化发酵生产丁二酸[J]. 食品与生物技术学报, 2008, 27 (5): 78-82 [Dong JJ, Zheng P, Ni Y, Sun ZH. Production of succinic acid by simultaneous saccharif ication and fermentation from Jerusalem artichoke [J]. J Food Biol Technol, 2008, 27 (5): 78-82]
93 Jiang M, Dai W, Xi Y, Wu M, Kong X, Ma J, Zhang M, Chen K, Wei P. Succinic acid production from sucrose by Actinobacillus succinogenes NJ113 [J]. Bioresour Technol, 2014, 153: 327-332
94 张敏, 马江锋, 徐冰, 梁丽亚, 刘嵘明, 王光明, 姜岷. 利用木薯淀粉为原料发酵生产丁二酸的研究[J]. 中国酿造, 2011, 30 (7): 29-32 [Zhang M, Ma JF, Xu B, Liang LY, Liu RM, Wang GM, Jiang M. Succinic acid fermentation from cassava starch [J]. China Brewing, 2011, 30 (7): 29-32]
95 Chan S, Kanchanatawee S, Jantama K. Production of succinic acid from sucrose and sugarcane molasses by metabolically engineered Escherichia coli [J]. Bioresour technol, 2012, 103 (1): 329-336
96 Wang D, Li Q, Yang M, Zhang Y, Su Z, Xing J. Efficient production of succinic acid from corn stalk hydrolysates by a recombinant Escherichia coli with ptsG mutation [J]. Process Biochem, 2011, 46 (1): 365-371
97 Sun Z, Li M, Qi Q, Gao C, Lin CSK. Mixed food waste as renewable feedstock in succinic acid fermentation. Appl Biochem Biotechnol, 2014, 174 (5): 1-12
98 Wang C, Zhang H, Cai H, Zhou Z, Chen Y, Chen Y, Ouyang P. Succinic acid production from corn cob hydrolysates by genetically engineered Corynebacterium glutamicum [J]. Appl Biochem Biotechnol, 2014, 172 (1): 340-350
99 杨卓娜, 姜岷, 李建, 方晓江, 叶贵子, 白雪飞, 郑晓宇, 韦萍. 不同pH调节剂对产琥珀酸放线杆菌NJ113发酵产丁二酸的影响[J]. 生物工程学报, 2010, 26 (11): 1500-1506 [Yang ZN, Jiang M, Li J, Fang XJ, Ye GZ, Bai XF, Zheng XY, Wei P. Effects of different neutralizing agents on succinate production by Actinobacillus succinogenes NJ113 [J]. Chin J Biotech, 2010, 26 (11): 1500-1506]
100 Vemuri G, Eiteman M, Altman E. Succinate production in dual-phase Escherichia coli fermentations depends on the time of transition from aerobic to anaerobic conditions [J]. J Ind Microbiol Biotechnol, 2002, 28 (6): 325-332
101 Krishnakumar J. Biological production of succinic acid using a cull peach medium [D]. South Carolina: Clemson University, 2013
102 Donnelly M, Millard CS, Nghiem NP, Stols L. Method for the production of dicarboxylic acids:. US, 5869301A [P]. 1999
103 刘树文, 姜岷, 马江峰, 陈可泉, 于丽, 岳方方, 徐冰. 有氧生长调控策略对大肠杆菌工程菌厌氧发酵生产丁二酸的影响[J]. 中国酿造, 2010, 29 (6): 94-96 [Liu SW, Jiang M, Ma JF, Chen KQ, Yu L ,Yue FF, Xu B. Effect of aerobic cell-growth control on anaerobic succinate fermentation by engineering strain of E. coli [J]. China Brewing, 2010, 29 (6): 94-96]
104 Cheng KK, Zhao XB, Zeng J, Wu RC, Xu YZ, Liu DH, Zhang JA. Downstream processing of biotechnological produced succinic acid [J]. Appl Microbiol Biotechnol, 2012, 95 (4): 841-850
105 Bechthold I, Bretz K, Kabasci S, Kopitzky R, Springer A. Succinic acid: a new platform chemical for biobased polymers from renewable resources [J]. Chem Eng Technol, 2008, 31 (5): 647-654
106 Li Q, Wang D, Hu G, Xing J, Su Z. Integrated bioprocess for high-efficiency production of succinic acid in an expanded-bed adsorption system [ J]. Biochem Eng J, 2011, 56 (3): 150-157
107 Wang C, Ming W, Yan D, Zhang C, Yang M, Liu Y, Zhang Y, Guo B, Wan Y, Xing J. Novel membrane-based biotechnological alternative process for succinic acid production and chemical synthesis of bio-based Poly (butylene succinate) [ J]. Bioresour Technol, 2014, 156: 6-13
108 Sun Y, Yan L, Fu H, Xiu Z. Salting-out extraction and crystallization of succinic acid from fermentation broths [J]. Process Biochem, 2014, 49 (3): 506-511
109 何明雄, 吴波, 谭芙蓉, 王景丽, 税宗霞, 秦晗, 代立春, 胡启春. 运动发酵单胞菌在生物炼制中的研究进展[J]. 生物技术进展, 2014, 4 (5): 331-339 [He MX, Wu B, Tan TR, Wang JL, Shui ZX, Qin H, Dai LC, Hu QC. Research progress of zymomonas mobilis on biorefinery system [J]. Curr Biotechnol, 2014, 4 (5): 331-339]


 SHUI Zongxia,WANG Jingli,QIN Han,et al.Construction and preliminary fermentation of succinate-producing recombinant ethanologenic Zymomonas mobilis[J].Chinese Journal of Applied & Environmental Biology,2015,21(01):657.[doi:10.3724/SP.J.1145.2015.02008]
[2]董晓翔,陈修来,刘立明,等.代谢工程改造Escherichia coli生产L-苹果酸[J].应用与环境生物学报,2017,23(02):269.[doi:10.3724/SP.J.1145.2016.04012]
 DONG Xiaoxiang,,et al.Design and construction of an L-malate-overproducing Escherichia coli strain[J].Chinese Journal of Applied & Environmental Biology,2017,23(01):269.[doi:10.3724/SP.J.1145.2016.04012]
 YAO Jian,GOU Min,et al.Research progress on biosynthesis of “green plastics”: polyhydroxyalkanoates[J].Chinese Journal of Applied & Environmental Biology,2021,27(01):1662.[doi:10.19675/j.cnki.1006-687x.2020.08007]
 DENG Ming & DING Junmei.Application progress of genome editing technology CRISPR/Cas9 in microbial cells[J].Chinese Journal of Applied & Environmental Biology,2022,28(01):787.[doi:10.19675/j.cnki.1006-687x.2021.01051]


四川省青年科学基金项目(2015JQ0047)、四川省科技支撑计划项目(2014NZ0045)和国家自然科学基金项目(31000028)资助 Supported by Youth Science and Technology Foundation of Sichuan Province (2015JQ0047), the Sichuan Key Technology R & D Program (2014NZ0045)and the National Natural Science Foundation of China (31000028)
更新日期/Last Update: 2015-02-15