|本期目录/Table of Contents|

[1]欧强,王江涛,周剑虹,等.滨海湿地不同水位梯度下的土壤CO2通量比较[J].应用与环境生物学报,2014,20(06):992-998.[doi:10.3724/SP.J.1145.2014.05027]
 OU Qiang,WANG Jiangtao,ZHOU Jianhong,et al.Comparison of soil CO2 flux among different water levels in coastal wetlands[J].Chinese Journal of Applied & Environmental Biology,2014,20(06):992-998.[doi:10.3724/SP.J.1145.2014.05027]
点击复制

滨海湿地不同水位梯度下的土壤CO2通量比较()
分享到:

《应用与环境生物学报》[ISSN:1006-687X/CN:51-1482/Q]

卷:
20卷
期数:
2014年06期
页码:
992-998
栏目:
研究论文
出版日期:
2014-12-31

文章信息/Info

Title:
Comparison of soil CO2 flux among different water levels in coastal wetlands
作者:
欧强 王江涛 周剑虹 李艳 姜楠 王开运
1华东师范大学生态环境学院 上海 200062 2上海市城市化生态过程与生态恢复重点实验室 上海 200062
Author(s):
OU Qiang WANG Jiangtao ZHOU Jianhong LI Yan JIANG Nan WANG Kaiyun
1College of Ecology and Environment, East China Normal University, Shanghai 200062, China 2Shanghai Key Laboratory of Urbanization and Ecological Restoration, East China Normal University, Shanghai 200062, China
关键词:
水位梯度滨海湿地CO2通量土壤温度土壤含水量
Keywords:
water level coastal wetland CO2 flux soil temperature soil moisture content
分类号:
Q148
DOI:
10.3724/SP.J.1145.2014.05027
文献标志码:
A
摘要:
为了解水位对滨海湿地土壤CO2通量的影响,利用Licor-8100土壤CO2通量测定仪器对崇明东滩滨海湿地植物生长季(4-10月)不同水位梯度(低水位、中水位和高水位)下的土壤CO2通量进行观测,主要包括CO2通量日动态、季节动态、温度敏感性指数(Q10)、总CO2通量释放量以及土壤温度和CO2通量之间的关系. 结果表明,低、中、高水位生长季土壤CO2通量总量分别为32 490.36、38 173.46和26 200.94 kg hm-2;3个水位梯度土壤CO2通量的日动态和季节动态均主要受温度影响. 中、低水位土壤CO2通量的日变化峰值出现在12:00左右,比高水位提前2 h左右,不同水位梯度最小值均出现在凌晨4:00左右. 不同水位梯度下的土壤CO2通量具有明显的季节性变化,呈单峰型,最大通量均出现在7月底;低、中、高水位生长季土壤CO2通量均值分别为644.65、757.41和519.86 mg m-2 h-1,不同水位梯度间差异显著. 这表明,水位降低会促进土壤CO2释放,但水位下降超过一定限度,则会抑制其释放. 各水位梯度下的土壤CO2通量与土壤5 cm温度均呈显著指数关系,土壤温度对土壤CO2通量的解释率由低水位到高水位依次降低. Q10值高水位最大(3.9)、中水位最低(2.8). 整个生长季不同水位梯度下土壤含水量对土壤CO2通量影响不显著,但高温季节有较大影响. 土壤温度、土壤含水量的二元方程仅对高水位土壤CO2通量季节变异的解释率有所增强,对中、低水位的解释率均降低. 综上所述,合理调控滨海湿地水位有助于降低其土壤CO2通量,进而增强其碳汇功能.
Abstract:
For a comprehensive understanding of the influence of water level on soil CO2 flux of coastal wetlands, we measured the soil CO2 flux of three different water levels in the Dongtan coastal wetland of the Chongming Island with Li-8100 automated soil CO2 flux system. The diurnal dynamics, seasonal dynamics, temperature sensitivity index (Q10), total CO2 emissions, and relationship between soil temperature and soil CO2 flux were investigated in three different water levels including low water level (L), medium water level (M) and high water level (H). The results showed the growing-season total CO2 emissions in the wetland as 32 490.36 kg hm-2 from the low water level, 38 173.46 kg hm-2 from the medium and 26 200.94 kg hm-2 from high water level. Diurnal and seasonal variations of soil CO2 flux among different water levels were mainly affected by soil temperatures. Soil CO2 flux reached the maximum around the noon in low and medium water levels, but about two hours earlier in the high water level. Minimum flux occurred at 4:00 am in all three water levels. There was an obvious single-peak seasonal variation in the CO2 emissions during the whole observation period, with the peak on July 30th. The growing-season mean value was 644.65 mg m-2 h-1 for the low water level, 757.41 mg m-2 h-1 for the medium and 519.86 mg m-2 h-1 for the high water level, with significant differences among the water levels. Significant relationships were found between the soil temperature at 5 cm depth and soil CO2 flux from different water levels, which could be best described by the exponential equations. Rate of interpretation of soil temperature to soil CO2 flux reduced from low to high water level. The Q10 value was the highest (3.9) in high water level and the lowest (2.8) in the medium level. Throughout the whole growing season, soil moisture did not affect soil CO2 flux significantly except for the high temperature season. Two-dimensional equations based on soil temperature and soil water content were better in explaining the temporal variations of soil CO2 flux of high water level than those of medium and low water levels. The results indicated that reasonable regulation of coastal wetland water level can reduce the soil CO2 flux, and therefore enhance the carbon sink function.

参考文献/References:

1 Raich J, Schlesinger W. The global carbon dioxide flux in soil respiration and its relationship to vegetation and climate [J]. Tellus B: Chem Phys Meteorol,1992, 44 (2): 81-99
2 Schlesinger W, Andrews J. Soil respiration and the global carbon cycle [J]. Biogeochemistry, 2000, 48 (1): 7-20
3 IPCC. Land-use, land-use change and forestry [M]∥Watson R, Noble I, Bolin B. A Special Report of the IPCC. Cambridge: Cambridge University Press, 2000. 45-49
4 孟宪民. 湿地与全球环境变化[J]. 地理科学, 1999, 19 (5): 385-391 [Meng, XM. Wetland and global environmental change [J]. Sci Geogr Sin, 1999, 19 (5): 385-391]
5 Joiner D, Lafleur P, McCaughey J, McCaughey J, Bartlett P. Interannual variability in carbon dioxide exchanges at a boreal wetland in the BOREAS northern study area [J]. J Geophys Res Atm, 1999,104 (D22): 27663-27672
6 Moore T, Roulet N, Waddington J. Uncertainty in predicting the effect of climatic change on the carbon cycling of Canadian peatlands [J]. Climate Change, 1998, 40 (2): 229-245
7 万忠梅. 水位对小叶章湿地CO2、CH4排放及土壤微生物活性的影响[J]. 生态环境学报, 2013, 22 (3): 465-468 [Wan ZM. Effect of water level on marsh CO2, CH4 emission and soil microbial activity [J]. Chin J Ecol, 2013, 22 (3): 465-468]
8 Bubier J, Bhatia G, Moore T, Roulet N, Lafleur P. Spatial and temporal variability in growing-season net ecosystem carbon dioxide exchange at a large peatland in Ontario, Canada [J]. Ecosystems, 2003,6 (4): 353-367
9 Waddington J, Strack M, Greenwood M.Toward restoring the net carbon sink function of degraded peatlands: short-term response in CO2 exchange to ecosystem-scale restoration [J]. J Geogr Res, 2010, 115: G01008
10 Aerts R, Ludwig F. Water-table changes and nutritional status affect trace gas emissions from laboratory columns of peatland soils [J]. Soil Biol Biochem, 1997, 29 (11-12): 1691-1698
11 杜紫贤, 曾宏达, 黄向华, 魏国军,李熙波,张静,杨玉盛. 城市沿江芦苇湿地土壤呼吸动态及影响因子分析[J]. 亚热带资源与环境学报, 2010, 5 (3): 49-55 [Du ZX, Zeng HD, Huang XH, Wei GJ, Li XB, Zhang J, Yang YS. Soil respiration and controlling factors at Phragmites communis community in riverside wetlands [J]. J Subtr Res Env, 2010, 5 (3): 49-55]
12 汪青, 刘敏, 侯立军, 程书波. 崇明东滩湿地CO2、CH4和N2O排放的时空差异[J]. 地理研究, 2010, 5 (29): 935-946 [Wang Q, Liu M, Hou LJ, Cheng SB. Characteristics and influencing factors of CO2, CH4 and N2O emissions from Chongming eastern tidal flat wetland [J]. Geogr Res, 2010, 5 (29): 935-946]
13 Bubier J, Crill P, Mosedale A, Frolking S, Linder E. Peatland responses to varying interannual moisture conditions as measured by automatic CO2 chambers [J]. Global Biogeochem Cycles, 2003, 17 (2): 1066-1081
14 侯翠翠, 宋长春, 李英臣, 杨桂生. 不同水分条件沼泽湿地土壤轻组有机碳与微生物活性动态[J]. 中国环境科学, 2012,32 (1): 113-119 [Hou CC, Song CC, Li YC, Yang GS. Light fractions of soil organic carbon and microbial activity dynamics in marshes under different water conditions [J]. Chin Environ Sci, 2012, 32 (1): 113-119]
15 Oberbauer S, Gillespie C, Cheng W, Gebauer R, Sala Serra A, Tenhunen J. Environmental effects on CO2 efflux from riparian tundra in the northern foothills of the Brooks Range, Alaska, USA [J]. Oecologia, 1992, 92 (4): 568-577
16 Chimner R, Cooper D. Influence of water table levels on CO2 emissions in a Colorado subalpine fen: an in situ microcosm study [J]. Soil Biol Biochem, 2003, 35 (3): 345-351
17 陈全胜, 李凌浩, 韩兴国, 阎志丹. 水分对土壤呼吸的影响及机理[J]. 生态学报, 2003, 23 (5):972-978 [Chen QS, Li LH, Han XG, Yan ZD. Effects of water content on soil respiration and the mechanisms [J]. Acta Ecol Sin, 2003, 23 (5): 972-978]
18 Makiranta P, Laiho R, Fritze H, Hyt?nen J, Laine J, Minkkinen K. Indirect regulation of heterotrophic peat soil respiration by water level via microbial community structure and temperature sensitivity [J]. Soil Biol Biochem, 2009, 41 (4): 695-703
19 刘银银, 李峰, 孙庆业, 谢永宏. 湿地生态系统土壤微生物研究进展[J]. 应用与环境生物学报, 2013, 19 (3): 547-552 [Liu YY, Li F, Sun QY, Xie YH. Review on the Study of Soil Microorganisms in Wetland Ecosystems [J]. Chin J Appl Environ Biol, 2013, 19 (3): 547-552]
20 牟长城, 石兰英, 孙晓新. 小兴安岭典型草丛沼泽湿地CO2、CH4和N2O排放动态及其影响因素[J]. 植物生态学报, 2009, 33 (3): 617-623 [Mu CQ, Shi LY, Sun XX. Fluxes and controls of CO2, CH4 and N2O in a marsh wetland of Xiaoxing’an Mountains, Northeastern China [J]. Chin J Plant Ecol, 2009, 33 (3): 617-623]
21 Buchmann N. Biotic and abiotic factors controlling soil respiration rates in Picea abies stands [J]. Soil Biol Biochem, 2000, 32 (11-12): 1625-1635
22 Han GX, Zhou GS, Xu ZZ, Yang Y, Liu JL, Shi KQ. Soil temperature and biotic factors drive the seasonal variation of soil respiration in a maize (Zea mays L.) agricultural ecosystem [J]. Plant Soil, 2007, 291 (1-2):15-26
23 Kirschbaum MUF. The temperature dependence of organic-matter decomposition-still a topic of debate [J]. Soil Biol Biochem, 2006, 38 (9):2510-2518
24 Davidson E, Belk E, Boone R. Soil water content and temperature as independent or confounded factors controlling soil respiration in a temperate mixed hardwood forest [J]. Global Change Biol, 1998, 4 (2): 217-227
25 李兆富, 吕宪国, 杨青. 湿地土壤CO2通量研究进展[J]. 生态学杂志, 2002, 21 (6): 47-50 [Li ZF, Lü XG, Yang Q. A review on wetland soil CO2 flux [J]. Chin J Ecol, 2002, 21 (6): 47-50]
26 石兰英, 牟长城, 田新民. 小兴安岭典型沼泽湿地生态系统呼吸及其影响因子[J]. 生态学杂志, 2009, 28 (12): 2477-2482 [Shi LY, Mu CC, Tian XM. Ecosystem respiration and its affecting factors in typical marsh and shrub swamp in Xiaoxing ‘an Mountains [J]. Chin J Ecol, 2009, 28 (12): 2477-2482]
27 Markus R, Jens-Arne S, Andrew C, Angeli S, John D. Does the temperature sensitivity of decomposition of soil organic matter depend upon water content, soil horizon, or incubation time? [J]. Global Change Biol, 2005, 11 (10): 1754-1767
28 江长胜, 郝庆菊, 宋长春, 胡必琴. 垦殖对沼泽湿地土壤呼吸速率的影响[J]. 生态学报, 2010, 30 (17): 4539-4548 [Jiang CS, Hao QJ, Song CC, Hu BQ. Effects of marsh reclamation on soil respiration in the Sanjiang Plain [J]. Acta Ecol Sin, 2010, 30 (17): 4539-4548]
29 Xu M, Qi Y. Spatial and seasonal variations of Q10 determined by soil respiration measurements at a Sierra Nevadan forest [J]. Global Biogeochem Cycles, 2001, 15 (3): 687-696
30 黄耀, 刘世梁, 沈其荣, 宗良纲. 环境因子对农业土壤有机碳分解的影响. 应用生态学报, 2002, 13 (6): 709-714 [Huang Y, Liu S, Shen Q, Zong L. Influence of environmental factors on the decomposition of organic carbon in agricultural soils [J]. Chin J Appl Ecol, 2002, 13 (6): 709-714]
31 杨庆朋, 徐明, 刘洪升, 王劲松, 刘丽香, 迟永刚, 郑云普. 土壤呼吸温度敏感性的影响因素和不确定性[J]. 生态学报, 2009, 33 (5): 936-949 [Yang QP, Xu M, Liu HS, Wang JS, Liu LX, Chi YG, Zheng YP. Impact factors and uncertainties of the temperature sensitivity of soil respiration [J]. Acta Ecol Sin, 2009, 33 (5): 936-949]
32 杨淑慧. 不同管理措施对长江口芦苇群落土壤呼吸及生长、生理的影响[D]. 上海: 华东师范大学, 2012 [Yang SH. Effects of different management practices on soil respiration, growth and physiological characteristics of Phragmites communities [D]. Shanghai: East China Normal University, 2012]
33 Xu M, Qi Y. Soil-surface CO2 efflux and its spatial and temporal variations in a young ponderosa pine plantation in Northern California [J]. Global Change Biol, 2001, 7 (6): 667-677

相似文献/References:

[1]戚志伟,高艳娜,李沙沙,等.长江口滨海湿地芦苇和白茅形态和生长特征对地下水位的响应[J].应用与环境生物学报,2016,22(06):986.[doi:10.3724/SP.J.1145.2016.04010]
 QI Zhiwei,GAO Yanna,et al.A comparative study of morphology and growth traits between Phragmites australis and Imperata cylindrica under varying ground water table in the coastal wetland of Yangtze River Estuary[J].Chinese Journal of Applied & Environmental Biology,2016,22(06):986.[doi:10.3724/SP.J.1145.2016.04010]

备注/Memo

备注/Memo:
国家科技支撑计划后世博科技专项(10dz1200602)和上海市科委崇明科技专项(11dz1210903)资助 Supported by the National Science and Technology Support Program after the Expo Special Science and Technology(10dz1200602), and the Shanghai Municipal Science and Technology Commission of Chongming Science and Technology Projects(11dz1210903)
更新日期/Last Update: 2015-01-05