|本期目录/Table of Contents|

[1]李建,占国强,王娟,等.生物电解池氨氧化脱氮产能[J].应用与环境生物学报,2014,20(06):1058-1062.[doi:10.3724/SP.J.1145.2014.04042]
 LI Jian,ZHAN Guoqiang,WANG Juan,et al.Simultaneous production of energy from ammoxidation in microbial electrolysis cells[J].Chinese Journal of Applied & Environmental Biology,2014,20(06):1058-1062.[doi:10.3724/SP.J.1145.2014.04042]
点击复制

生物电解池氨氧化脱氮产能()
分享到:

《应用与环境生物学报》[ISSN:1006-687X/CN:51-1482/Q]

卷:
20卷
期数:
2014年06期
页码:
1058-1062
栏目:
研究论文
出版日期:
2014-12-31

文章信息/Info

Title:
Simultaneous production of energy from ammoxidation in microbial electrolysis cells
作者:
李建 占国强 王娟 高平 李大平
1四川大学生命科学学院 成都 610041 2中国科学院成都生物研究所 成都 610064
Author(s):
LI Jian ZHAN Guoqiang WANG Juan GAO Ping LI Daping
1School of Life Sciences, Sichuan University, Chengdu 610064, China 2Chengdu Institute of Biology, Chinese Academy of Science, Chengdu 610041, China
关键词:
生物电解池氨氧化脱氮氢气甲烷
Keywords:
microbial electrolysis cell ammoxidation denitrification hydrogen methane
分类号:
X703 : TM911.45
DOI:
10.3724/SP.J.1145.2014.04042
文献标志码:
A
摘要:
以不锈钢筒作为阴极、碳毡作为阳极,阴阳极间利用无纺布作为隔膜构建单室生物电解池,以氨作为唯一电子供体,接入混合菌群,通过恒定不同的阳极电势,考察不同初始浓度氨氮在生物电解池内的氧化与产物的生成情况. 结果表明,恒定阳极电势0.2 V(vs Ag/AgCl)时,经过5 d的运行,初始氨氮浓度200 mg/L、400 mg/L的氨氮去除率分别为30%、35%,氮气分别积累16.1 mL、17.18 mL,甲烷分别积累1.18 mL、1.46 mL;恒定阳极电势0.6 V(vs Ag/AgCl)时,初始氨氮浓度200 mg/L、400 mg/L,氨氮去除率分别为32.4%、36.6%,分别积累氮气16.48 mL、17.42 mL,积累甲烷1.3 mL、1.52 mL,未检测到硝态氮和亚硝态氮. 循环伏安扫描分析发现,阳极具有明显的氧化还原峰,且不同的阳极恒定电势,导致其氧化还原峰出现偏移. 通过电镜扫描,发现阳极微生物细胞表面具有明显的褶皱形状,高通量分析显示阳极微生物中Geobacter占24.11%,是优势菌群,在阳极氨氧化过程中起到关键作用. 同时发现系统中还存在氢营养型产甲烷菌Synergistes(3.8%)以及梭菌Clostridium(3.8%)和 Gordonia(1.85%)等功能微生物. 本文研究表明,在生物电解池内,微生物能够以氨氮作为电子供体,通过氨氧化脱氮,并产生氢气和甲烷.
Abstract:
In this study, a microbial electrolysis cell (MEC) was constructed with stainless steel tube as the cathode, carbon felt as the anode, nonwoven fabric as the separator between the two electrodes. Ammonia was the only electron donor, and mixed microbes inoculated in the cell. Through setting the different anode potentials, the products of ammonia oxidation under different ammonia concentrations were studied. The results showed that when the ammonium concentration was 200 mg/L and 400 mg/L, after 5 days’ operation under 0.2 V (vs Ag/AgCl) anode potential, the ammonia nitrogen removal rate reached 30% and 35% respectively. Additionally, 16.1 mL nitrogen and 1.18 mL methane were generated in the 200 mg/L system, while 17.18 mL and 1.46 mL for the 400 mg/L system. When the anode potential was adjusted to 0.6 V (vs Ag/AgCl), the ammonia nitrogen removal rate raised to 32.4% and 36.6% for the 200 mg/L and 400 mg/L system respectively. The production of nitrogen and methane were 16.48 mL and 1.3 mL for 200 mg/L system, while 17.42 mL and 1.52 mL for 400 mg/L system. During the operation period, no nitrate or nitrite nitrogen was detected. Cyclic voltammetry tests suggested that the anode had obvious redox peaks, and the location of the redox peaks would change by different anode potential. SEM indicated that the surface of the anode microorganisms had obvious fold shape. The high-throughput sequencing showed that Geobacter (24.11%) was the dominant population on the anode playing an important role in the ammonium oxidation process. The other functional microbes Synergistes (3.8%), Clostridium (3.8%) and Gordonia (1.85%) were also observed. The results of the experiment suggested that microorganisms are able to use ammonium as electron donor and produce hydrogen and methane in this MEC.

参考文献/References:

1 He Z, Kan J, Wang Y, Huang Y, Mansfeld F, Nealson KH. Electricity production coupled to ammonium in a microbial fuel cell [J]. Environ Sci Technol, 2009, 43 (9): 3391-3397
2 Van de Graaf AA,Mulder A, de Bruijn P, Jetten MS, Robertson LA, Kuenen JG. Anaerobic oxidation of ammonium is a biologically mediated proeess [J]. Appl Environ Microbiol, 1995, 61 (4): 1246-1251
3 Garrido JM, van Benthum WAJ, van Loosdrecht MCM, Heijnen JJ. Influence of dissolved oxygen concentration on nitrite accumulation in a biofilm airlift suspension reactor [J]. Biotechnol Bioeng, 1997, 53 (2): 168-178
4 Yooa H, Ahna KH, Leea HJ, Leeb KH, Kwakb YJ, Songa KG.Nitrogen removal from synthetic wastewater by simultaneous nitrification and denitrifyication (SND) via nitrite in an intermittently-aerated reactor [J]. Water Res, 1999, 33 (1): 145-154
5 Rabaey K, Rodríguez J, Blackall LL, Keller J, Gross P, Batstone D, Verstraete W, Nealson KH. Microbial ecology meets electrochemistry: electricity-driven and driving communities [J]. ISME J, 2007, 1 (1): 9-18
6 Liu H, Ramnarayanan R, Logan BE. Production of electricity during wastewater treatment using a single chamber microbial fuel cell [J]. Environ Sci Technol, 2004, 38 (7): 2281-2285
7 Gregory KB, Lovley DR. Remediation and recovery of uranium from contaminated subsurface environments with electrodes [J]. Environ Sci Technol, 2005, 39 (22): 8943-8947
8 Tandukar M, Huber SJ, Onodera T, Pavlostathis SG. Biological chromium(VI) reduction in the cathode of a microbial fuel cell [J]. Environ Sci Technol, 2009, 43 (21): 8159-8165
9 Li Y, Lu AH, Ding HR, Jin S, Yan YH, Wang CQ, Zen CP, Wang H. Cr(VI) reduction at rutile-catalyzed cathode in microbial fuel cells [J]. Electrochem Commun, 2009, 11 (7): 1496-1499
10 Huang LP, Chai XL, Chen GH, Logan BE. Effect of set potential on hexavalent chromium reduction and electricity generation from biocathode microbial fuel cells [J]. Environ Sci Technol, 2011, 45 (11): 5025-5031
11 Clauwaert P, Rabaey K, Aelterman P, Schamphelaire LD, Pham TH, Boeckx P, Boon N, Verstraete W. Biological denitrification in microbial fuel cells [J]. Environ Sci Technol, 2007, 41 (9): 3354-3360
12 Puiga S, Serraa M, Vilar-Sanzb A, Cabréa M, Ba?erasb L, Colprima J, Balaguer MD. Autotrophic nitrite removal in the cathode of microbial fuel cells [J]. Bioresour Technol, 2011, 102 (6): 4462-4467
13 Zhan GQ, Zhang LX, Li DP, Su WT, Tao Y, Qian JW. Autotrophic nitrogen removal from ammonium at low applied voltage in a single-compartment microbial electrolysis cell [J]. Bioresour Technol, 2012, 116: 271-277
14 Aulenta F, Canosa A, Reale P, Rossetti S, Panero S, Majone M. Microbial reductive dechlorination of trichloroethene to ethene with electrodes serving as electron donors without the external addition of redox mediators [J]. Biotechnol Bioeng, 2009, 103 (1): 85-91
15 Aulenta F, Reale P, Canosa A, Rossetti S, Panero S, Majone M. Characterization of an electro-active biocathode capable of dechlorinating trichloroethene and cis-dichloroethene to ethene [J]. Biosens Bioelectron, 2010, 25 (7): 1796-1802
16 Cheng SA, Logan BE. Sustainable and efficient biohydrogen production via electrohydrogenesis [J]. Proc Natl Acad Sci USA, 2007, 104 (47): 18871-18873
17 Villano M, Monaco G, Aulenta F, Majone M. Electrochemically assisted methane production in a biofilm reactor [J]. J Power Sources, 2011, 196 (22): 9467-9472
18 Nevin KP, Woodard TL, Franks AE, Summers ZM, Lovley DR. Microbial electrosynthesis: feeding microbes electricity to convert carbon dioxide and water to multicarbon extracellular organic compounds [J]. mBio, 2010, 1 (2): e00103-10
19 Nevin KP, Hensley SA, Franks AE, Summers ZM, Ou J, Woodard TL, Snoeyenbos-West OL, Lovley DR. Electrosynthesis of organic compounds from carbon dioxide is catalyzed by a diversity of acetogenic microorganisms [J]. Appl Environ Microbiol, 2011, 77 (9): 2882-2886
20 Li H, Opgenorth PH, Wernick DG, Rogers S, Wu TY, Higashide W, Malati P, Huo YX, Cho KM, Liao JC. Integrated electromicrobial conversion of CO2 to higher alcohols [J]. Science, 2012, 335 (6076): 1596-1596
21 K?pke M, Held C, Hujer S, Liesegang H, Wiezer A, Wollherr A, Ehrenreichb A,Lieblc W, Gottschalkb G, Dürre P. Clostridium ljungdahlii represents a microbial production platform based on syngas [J]. Proc Natl Acad Sci USA, 2010, 107 (29): 13087-13092
22 The Editorial Committee of “Analytical Method of Water and Wastewater” of State Environmental Protection Administration of China. Analytical Method of Water and Wastewater [M]. Beijing: Environmental Science Press, 1998
23 Reardon, PN, Mueller KT. Structure of the type IVa major pilin from the electrically conductive bacterial nanowires of Geobacter sulfurreducens [J]. J Biol Chem, 2013, 288 (41): 29260-29266
24 Mahadevan R, Bond DR, Butler JE, Esteve-Nu?ez A, Coppi MV, Palsson BO, Schilling CH and Lovley DR. Characterization of metabolism in the Fe(III)-reducing organism Geobacter sulfurreducens by constraint-based modeling [J]. Appl Environ Microbiol, 2006, 72 (2): 1558-1568
25 Francis CA, Beman JM, Kuypers MMM. New processes and players in the nitrogen cycle: the microbial ecology of anaerobic and archaeal ammonia oxidation [J]. ISME J, 2007, 1: 19-27
26 Straous M, Gerven EV, Zheng P, Kuenen JG, Jetten MSM. Ammonium removal from concentrated waste streams with the anaerobic ammonium oxidation (ANAMMOX) process in different configurations [J]. Water Res, 1997, 31: 1955-1962
27 Clémenta JC, Shresthab J, Ehrenfelda JG, Jafféb PR. Ammonium oxidation coupled to dissimilatory reduction of iron under anaerobic conditions in wetland soils [J]. Soil Biol Biochem, 2005, 37 (12): 2323-2328
28 Zhu X, Yates MD, Logan BE. Set potential regulation reveals additional oxidation peaks of Geobacter sulfurreducens anodic biofilms [J]. Electrochem Commun, 2012, 22: 116-119
29 Jetten, MSM, Wagnerc M, Fuerstd J, van Loosdrechtb M, Kuenenb G, Strousa M. Microbiology and application of the anaerobic ammonium oxidation (‘anammox’) process [J]. Curr Opin Biotech, 2001, 12 (3): 283-288
30 Kindaichi T, Ito T, Okabe S. Ecophysiological interaction between nitrifying bacteria and heterotrophic bacteria in autotrophic nitrifying biofilms as determined by microautoradiography-fluorescence in situ hybridization [J]. Appl Environ Microbiol, 2004, 70 (3): 1641-1650

相似文献/References:

[1]蒋沁芮,杨暖,吴亭亭,等.生物电化学脱氮技术研究进展[J].应用与环境生物学报,2018,24(02):408.[doi: 10.19675/j.cnki.1006-687x.2017.05038]
 JIANG Qinrui,YANG Nuan,WU Tingting,et al.Nitrogen removal from wastewater using the bioelectrochemical technology: a review[J].Chinese Journal of Applied & Environmental Biology,2018,24(06):408.[doi: 10.19675/j.cnki.1006-687x.2017.05038]

备注/Memo

备注/Memo:
国家自然科学基金项目(31270166)资助 Supported by the National Natural Science Foundation of China (31270166)
更新日期/Last Update: 2015-01-05