|本期目录/Table of Contents|

[1]高晓奇,肖能文,叶瑶,等. 基于Biolog-ECO分析长庆油田土壤微生物群落功能多样性特征[J].应用与环境生物学报,2014,20(05):913-918.[doi:10.3724/SP.J.1145.2014.03025]
 GAO Xiaoqi,XIAO Nengwen,YE Yao,et al. Analysis of microbial community functional diversity in the Changqing Oilfield based on Biology-ECO method[J].Chinese Journal of Applied & Environmental Biology,2014,20(05):913-918.[doi:10.3724/SP.J.1145.2014.03025]
点击复制

 基于Biolog-ECO分析长庆油田土壤微生物群落功能多样性特征()
分享到:

《应用与环境生物学报》[ISSN:1006-687X/CN:51-1482/Q]

卷:
20卷
期数:
2014年05期
页码:
913-918
栏目:
研究论文
出版日期:
2014-10-25

文章信息/Info

Title:
 Analysis of microbial community functional diversity in the Changqing Oilfield based on Biology-ECO method
作者:
 高晓奇肖能文叶瑶付梦娣李俊生
 中国环境科学研究院环境基准与风险评估国家重点实验室 北京 100012
Author(s):
GAO Xiaoqi XIAO Nengwen YE Yao FU Mengdi LI Junsheng
 State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012
关键词:
 BIOLOG-ECO长庆油田孔颜色平均变化率土壤微生物多样性
Keywords:
 Biolog-ECO Changqing Oilfield AWCD soil microbial diversity
分类号:
X171.5 : Q938.1
DOI:
10.3724/SP.J.1145.2014.03025
文献标志码:
A
摘要:
石油的开采造成土壤污染和地表扰动,从而影响土壤微生物群落结构与功能. 为进一步明确不同开采强度对土壤微生物的影响,选取长庆油田不同开采年限的6口油井,按照不同距离(3 m、5 m、10 m、20 m和50 m)采取土壤样品,通过Biolog-ECO技术研究油田地区土壤微生物群落功能多样性特征. 结果显示,油井作业区(3 m、5 m、10 m和20 m)土壤微生物群落平均吸光值(AWCD)、丰富度指数和Pielou指数显著低于作业区外(50 m)土壤微生物群落功能多样性(P < 0.05);不同距离采样点土壤微生物利用碳源方式存在差异;土壤微生物群落AWCD以及各功能多样性指数与土壤含水量和有机碳显著正相关(P < 0.05),与pH显著负相关(P < 0.01),但与总石油烃(TPH)相关性不显著(P > 0.05). 不同开采年限油井土壤TPH存在差异,但是土壤微生物群落无显著差异(P > 0.05). 研究表明油田作业区石油开采对土壤微生物群落功能多样性有一定的影响,但微生物群落功能与油井开采时间不相关,其结果可以为油田地区的污染评价和生物修复提供参考.
Abstract:
Soil pollution and surface disturbance caused by oil exploitation affected the structure and function of soil microbial communities. However, the impacts of different exploitation intensity on soil microbes need to be clarified. In this study, we collected soil sample from six selected oil wells with different distances (3 m, 5 m, 10 m, 20 m and 50 m) located in the Changqing Oilfield, and analyzed their soil microbial community functional diversity using Biolog-ECO technology. The results showed that the average well color development (AWCD), richness index and Pielou index of soil microbial communities in the operating area (3 m, 5 m, 10 m and 20 m) of oil wells were significantly lower than that outside the operating area (50 m). Differences existed for carbon-source utilization within these sample sites. The AWCD and richness index for soil microbial communities showed significant positive correlation with soil moisture and organic carbon (P < 0.05), and significant negative correlation with pH (P < 0.01). However, it was not significantly associated with total petroleum hydrocarbons (TPH) (P > 0.05). The soil TPH of oil wells with different exploitation periods showed diversity, but no significant differences in soil microbial communities (P > 0.05). The results showed that oil exploitation in oil operations area influences the diversity of soil microbial community function. However, the function of microbial communities and oil exploitation period are not related. Our research provides insights into the assessment and bioremediation in contaminated oil areas.

参考文献/References:

 

1 Waksman SA. Soil microbiology [M]. New York: John Wiley and Sons, Inc., 1952<br/>

2 Steenwerth KL, Jackson LE, Calderón FJ, Stromberg MR, Scow KM. Soil microbial community composition and land use history in cultivated and grassland ecosystems of coastal California [J]. Soil Biol Biochem, 2002, 34 (11): 1599-1611<br/>

3 Roszak D, Colwell R. Survival strategies of bacteria in the natural environment [J]. Microbiol Rev, 1987, 51 (3): 365<br/>

4 Garland JL, Mills AL. Classification and characterization of heterotrophic microbial communities on the basis of patterns of community-level sole-carbon-source utilization [J]. Appl Environ Microbiol, 1991, 57 (8): 2351-2359<br/>

5 Xue D, Yao H-Y, Ge D-Y, Huang C-Y. Soil microbial community structure in diverse land use systems: a comparative study using Biolog, DGGE, and PLFA analyses [J]. Pedosphere, 2008, 18 (5): 653-663<br/>

6 罗倩, 黄宝灵, 唐治喜, 来利明, 魏伟, 郑元润. 新疆盐渍土3种植被类型土壤微生物碳源利用[J]. 应用与环境生物学报, 2013, 19 (1): 96-104 [Luo Q, Huang B, Tang Z, Lai L, Wei W, Zheng Y. Carbon source utilization of microbes in saline soil of three vegetation types in Xinjiang, China [J]. Chin J Appl Environ Biol, 2013, 19 (1): 96-104]<br/>

7 Singh MP. Application of Biolog FF MicroPlate for substrate utilization and metabolite profiling of closely related fungi [J]. J Microbiol Methods, 2009, 77 (1): 102-108<br/>

8 Wünsche L, Babel W. The suitability of the Biolog Automated Microbial Identification System for assessing the taxonomical composition of terrestrial bacterial communities [J]. Microbiol Res, 1996, 151 (2): 133-143<br/>

9 李俊生, 肖能文. 陆地石油开采污染生态风险评估技术[M]. 北京: 中国环境出版社, 2013 [Li JS, Xiao NW. Ecological risk assessment techniques of terrestrial oil pollution [M]. Beijing: Chinese Environmental Science Press, 2013]<br/>

10 Ding K, Luo Y, Sun T, Li P. Bioremediation of soil contaminated with petroleum using forced-aeration composting [J]. Pedosphere, 2002, 12 (2): 145-150<br/>

11 Franco I, Contin M, Bragato G, De Nobili M. Microbiological resilience of soils contaminated with crude oil [J]. Geoderma, 2004, 121 (1-2): 17-30<br/>

12 Yang S, Wen X, Jin H, Wu Q. Pyrosequencing investigation into the bacterial community in permafrost soils along the China-Russia crude oil pipeline (CRCOP) [J]. PLoS ONE, 2013, 8 (11): e52730<br/>

13 MacNaughton SJ, Stephen JR, Venosa AD, Davis GA, Chang Y-J, White DC. Microbial population changes during bioremediation of an experimental oil spill [J]. Appl Environ Microbiol, 1999, 65 (8): 3566-3574<br/>

14 刘五星, 骆永明, 滕应, 李振高, 吴龙华. 石油污染土壤的生态风险评价和生物修复Ⅱ.石油污染土壤的理化性质和微生物生态变化研究[J]. 土壤学报, 2007, 44 (5): 848-853 [Liu WX, Luo YM, Teng Y, Li ZG, Wu LH. ECO-risk assessment and bioremediation of petroleum contaminated soil.changes in physico-chemical properties andmicrobial ecology ofpetroleum contaminated soil [J]. Acta Pedol Sin, 2007, 44 (5): 848-853]<br/>

15 Voordouw G, Armstrong SM, Reimer MF, Fouts B, Telang AJ, Shen Y, Gevertz D. Characterization of 16S rRNA genes from oil field microbial communities indicates the presence of a variety of sulfate-reducing, fermentative, and sulfide-oxidizing bacteria [J]. Appl Environ Microbiol, 1996, 62 (5): 1623-1629<br/>

16 张智全, 于爱忠, 罗珠珠, 陈年来, 黄高宝. 甘肃省庆阳市生态足迹和生态承载力动态研究[J]. 草业学报, 2010, 19 (4): 187-193 [Zhang ZQ, Yu AZ, Luo ZZ, Chen NL, Huang GB. Dynamics of the ecological footprint and ecological capacity of Qingyang, Gansu [J]. Acta Pratac Sin, 2010, 19 (4): 187-193]<br/>

17 王如刚, 王敏, 牛晓伟, 唐景春. 超声-索氏萃取-重量法测定土壤中总石油烃含量[J]. 分析化学, 2010, 38 (3): 417-420 [Wang GR, Wang M, Niu XW, Tang JC. Determination of total petroleum hydrocarbons content in soil byultrasonic-soxhlet extraction-gravimetric analysis [J]. Chin J Analyt Che, 2010, 38 (3): 417-420]<br/>

18 Haack SK, Garchow H, Klug MJ, Forney LJ. Analysis of factors affecting the accuracy, reproducibility, and interpretation of microbial community carbon source utilization patterns [J]. Appl Environ Microbiol, 1995, 61 (4): 1458-1468<br/>

19 Preston-Mafham J, Boddy L, Randerson PF. Analysis of microbial community functional diversity using solecarbonsource utilisation profiles a critique [J]. FEMS Microbiol Ecol, 2002, 42 (1): 1-14<br/>

20 Classen AT, Boyle SI, Haskins KE, Overby ST, Hart SC. Community-level physiological profiles of bacteria and fungi: plate type and incubation temperature influences on contrasting soils [J]. FEMS Microbiol Ecol, 2003, 44 (3): 319-328<br/>

21 Shannon CE. A mathematical theory of communication [M]. SAN Antonio: American Telephone and Telegraph Company, 1948<br/>

22 Rogers B, Tate Iii R. Temporal analysis of the soil microbial community along a toposequence in Pineland soils [J]. Soil Biol Biochem, 2001, 33 (10): 1389-1401<br/>

23 Pielou EC. Mathematical Ecology [M]. New York: John Wiley & Sons Inc, 1975<br/>

24 Simpson EH. Measurement of diversity [J]. Nature, 1949, 163: 688<br/>

25 郑丽萍, 龙涛, 林玉锁, 于赐刚, 刘燕, 祝欣. Biolog-ECO解析有机氯农药污染场地土壤微生物群落功能多样性特征 [J]. 应用与环境生物学报, 2013, 19 (5): 759-765 [Zheng L, Long T, Lin Y, Yu C, Liu Y, Zhu X. Biolog-ECO analysis of microbial community functional diversity in organochlorine contaminated soil [J]. Chin J Appl Environ Biol, 2013, 19 (5): 759-765] <br/>

26 Weber KP, Grove JA, Gehder M, Anderson WA, Legge RL. Data transformations in the analysis of community-level substrate utilization data from microplates [J]. J Microbiol Methods, 2007, 69 (3): 461-469<br/>

27 肖能文, 谢德燕, 李俊生, 王学霞, 闫春红, 罗建武, 胡理乐. 胜利油田油井开采时间对土壤线虫群落的影响 [J]. 环境科学研究, 2011, 24 (9): 1008-1015 [Xiao NW, Xie DY, Li JS, Wang XX, Yan CH, Luo JW, Hu LL. Effect of time duration of oil well exploitation on soil nematodecommunities in shengli oilfield [J]. Res Environ Sci, 2011, 24 (9): 1008-1015]<br/>

28 Kaufmann K, Christophersen M, Buttler A, Harms H, Höhener P. Microbial community response to petroleum hydrocarbon contamination in the unsaturated zone at the experimental field site Værløse, Denmark [J]. FEMS Microbiol Ecol, 2004, 48 (3): 387-399<br/>

29 Coppotelli B, Ibarrolaza A, Del Panno M, Morelli I. Effects of the inoculant strain Sphingomonas paucimobilis 20006FA on soil bacterial community and biodegradation in phenanthrene-contaminated soil [J]. Microb Ecol, 2008, 55 (2): 173-183<br/>

30 刘晓艳, 史鹏飞, 孙德智. 石油污染地表土壤的微生物降解特征[J]. 西安石油大学学报(自然科学版), 2005, 20 (4): 64-67 [Liu XY, Shi PF, Sun DZ. Characteristics of the biodegradation of the mound soil contaminated by crude oil [J]. J Xian Shiyou Univers (Nat Sci Ed), 2005, 20 (4): 64-67]

相似文献/References:

[1]郑丽萍,龙涛,林玉锁,等.Biolog-ECO解析有机氯农药污染场地土壤微生物群落功能多样性特征[J].应用与环境生物学报,2013,19(05):759.[doi:10.3724/SP.J.1145.2013.00759]
 ZHENG Liping,LONG Tao,LIN Yusuo,et al.Biolog-ECO Analysis of Microbial Community Functional Diversity in Organochlorine Contaminated Soil[J].Chinese Journal of Applied & Environmental Biology,2013,19(05):759.[doi:10.3724/SP.J.1145.2013.00759]
[2]张华玲,蔡莹,谭周进,等.超微七味白术散对菌群失调腹泻小鼠肠道微生物代谢多样性的影响[J].应用与环境生物学报,2014,20(01):93.[doi:10.3724/SP.J.1145.2014.00093]
 ZHANG Hualing,CAI Ying,TAN Zhoujin,et al.Effects of ultra-micro powder Qiweibaizhusan on metabolism diversity of intestinal microflora in diarrhea mice with dysbacteriosis[J].Chinese Journal of Applied & Environmental Biology,2014,20(05):93.[doi:10.3724/SP.J.1145.2014.00093]
[3]徐梦宇,刘艳杰,林晖,等.假单胞菌催化的碳碳双键不对称还原[J].应用与环境生物学报,2014,20(05):798.[doi:10.3724/SP.J.1145.2014.03034]
 XU Mengyu,LIU Yanjie,LIN Hui,et al. Asymmetric reduction of C=C bond catalyzed with Pseudomonas species[J].Chinese Journal of Applied & Environmental Biology,2014,20(05):798.[doi:10.3724/SP.J.1145.2014.03034]
[4]吴金鑫,宗红,陆信曜,等.高效催化合成3-羟基丙酸的菌株特性[J].应用与环境生物学报,2014,20(05):804.[doi:10.3724/SP.J.1145.2014.03003]
 WU Jinxin,ZONG Hong,LU Xinyao,et al. Characterization of a strain catalyzing biosynthesis of 3-hydroxypropionic acid[J].Chinese Journal of Applied & Environmental Biology,2014,20(05):804.[doi:10.3724/SP.J.1145.2014.03003]
[5]刘艳,徐岳松,吴茜,等. 雨生红球藻培养和产油脂工艺的优化[J].应用与环境生物学报,2014,20(05):809.[doi:10.3724/SP.J.1145.2014.01036]
 LIU Yan,XU Yuesong,WU Qian,et al. Optimization of Haematococcus pluvialis culture and lipid production process[J].Chinese Journal of Applied & Environmental Biology,2014,20(05):809.[doi:10.3724/SP.J.1145.2014.01036]
[6]杨云喜,李佩,徐岳松,等. 产抗菌肽乳酸菌的分离、鉴定及培养条件优化[J].应用与环境生物学报,2014,20(05):817.[doi:10.3724/SP.J.1145.2013.12044]
 YANG Yunxi,LI Pei,XU Yuesong,et al. Isolation and identification of antimicrobial peptides-producing lactic acid bacteria and optimization of the culture conditions[J].Chinese Journal of Applied & Environmental Biology,2014,20(05):817.[doi:10.3724/SP.J.1145.2013.12044]
[7]程才璎,刘晓风,袁月祥,等.酱香型白酒酒曲和连续七轮次堆积酒醅的细菌群落结构[J].应用与环境生物学报,2014,20(05):825.[doi:10.3724/SP.J.1145.2014.03035]
 CHENG Caiying,LIU Xiaofeng,YUAN Yuexiang,et al. Bacterial community structure in distiller’s yeast and accumulated fermented grains of Maotai-flavor liquor[J].Chinese Journal of Applied & Environmental Biology,2014,20(05):825.[doi:10.3724/SP.J.1145.2014.03035]
[8]郭亚萍,张国庆,陈青君,等. 双孢蘑菇堆肥过程中细菌群落结构分析[J].应用与环境生物学报,2014,20(05):832.[doi:10.3724/SP.J.1145.2014.03020]
 GUO Yaping,ZHANG Guoqing,CHEN Qingjun,et al. Bacterial community structure analysis for mushroom (Agaricus bisporus) compost using PCR-DGGE technique[J].Chinese Journal of Applied & Environmental Biology,2014,20(05):832.[doi:10.3724/SP.J.1145.2014.03020]
[9]毕京芳,黄钧,关梦龙,等. 微生物菌剂发酵中草药渣生产有机肥[J].应用与环境生物学报,2014,20(05):840.[doi:10.3724/SP.J.1145.2014.03051]
 BI Jingfang,HUANG Jun,GUAN Menglong,et al. Composting Chinese herbal residues with inoculum of microbial agents to produce organic fertilizer[J].Chinese Journal of Applied & Environmental Biology,2014,20(05):840.[doi:10.3724/SP.J.1145.2014.03051]
[10]贺文君,李甫,杨春艳,等. 川滇蔷薇果实中的三萜类化学成分[J].应用与环境生物学报,2014,20(05):846.[doi:10.3724/SP.J.1145.2014.02022]
 HE Wenjun,LI Fu,YANG Chunyan,et al. Studies on the triterpenoids from Rosa soulieana fruit[J].Chinese Journal of Applied & Environmental Biology,2014,20(05):846.[doi:10.3724/SP.J.1145.2014.02022]

备注/Memo

备注/Memo:
 中央级公益性科研院所基本科研业务专项(2013-YSKY-16)和国家科技支撑项目(2008BAC43B01)资助 Supported by the Basic Scientific Specialized Program of Central-level Public Research Institutes (2013-YSKY-16) and the National Key Technology Research and Development Program of China (2008BAC43B01)
更新日期/Last Update: 2014-10-30