1 Sunil A, Lee D, Show KY. Aerobic granular sludge: recent advances [J]. Biotechnol Adv, 2008, 26 (5): 411-423
2 彭永臻, 吴蕾, 马勇. 好氧颗粒污泥的形成机制、特性及应用研究进展[J]. 环境科学, 2010, 31 (2): 273-281 [Peng Y, Wu L, Ma Y. Advances: granulation mechanism, characteristics and application of aerobic sludge granules [J]. Environ Sci, 2010, 31 (2): 273-281]
3 Zita A, Hermansson M. Determination of bacterial cell surface hydrophobicity of single cells in cultures and in wastewater in situ [J]. FEMS Microbiol Let, 1997, 152 (2): 299-306
4 Wilen BM, Onuki M, Mino T. Microbial community structure in activated sludge floc analysed by fluorescence in situ hybridization and its relation to floc stability [J]. Water Res, 2008, 42 (8-9): 2300-2308
5 张英, 郎咏梅, 赵玉晓, 李善评. 由EGSB厌氧颗粒污泥培养好氧颗粒污泥的工艺探讨[J]. 山东大学学报(工学版), 2006, 36 (4): 56-59 [Zhang Y, Lang Y, Zhao Y. Research on technique of aerobic granular sludge cultivation by seeding EGSB anaerobic granular sludge [J]. J Shandong Univ, 2006, 36 (4): 56-59]
6 Liu Y, Tay J. State of the art of biogranulation technology for wastewater treatment [J]. Biotechnol Adv, 2004, 22 (7): 533-563
7 Tay J, Liu Q, Liu Y. Characteristics of aerobic granules grown on glucose and acetate in sequential aerobic sludge blanket reactors [J]. Environ Technol, 2002, 23 (8): 931-936
8 Tay J, Pan S, He Y. Effect of organic loading rate on aerobic ganulation: Part II. Characteristics of aerobic granules [J]. J Environ Eng, 2004, 130 (10): 1102-1109
9 Zheng Y, Yu H, Sheng G. Physical and chemical characteristics of granular activated sludge from a sequencing batch airlift reactor [J]. Proc Biochem, 2005, 40 (2): 645-650
10 Sunil A, Chen M, Lee D. Degradation of phenol by aerobic granules and isolated yeast Candida Tropicalis [J]. Biotechnol Bioeng, 2007, 96 (5): 844-852
11 Schwarzenbeck N, Borges JM, Wilderer PA. Treatment of dairy effluents in an aerobic granular sludge sequencing batch reactor [J]. Appl microbiol biotechnol, 2005, 66 (6): 711-718
12 Wang S, Liu X, Yu H. Aerobic granulation with brewery wastewater in a sequencing batch reactor [J]. Bioresour Technol, 2007, 98 (11): 2142-2147
13 Wang S, Liu X, Gong W. Aerobic granulation for 2, 4-dichlorophenol biodegradation in a sequencing batch reactor [J]. Chemosphere, 2007, 69 (5): 769-775
14 Jiang H, Tay J, Maszenan AM. Bacterial diversity and function of aerobic granules engineered in a sequencing batch reactor for phenol degradation[J]. Appl Environ Microbiol, 2004, 70 (11): 6767-6775
15 Sunil A, Lee D, Ren N. Biodegradation of pyridine using aerobic granules in the presence of phenol [J]. Water Res, 2007, 41 (13): 2903-2910
16 Sunil A, Lee D. Single-culture aerobic granules with Acinetobacter calcoaceticus [J]. Appl Microbiol Biotechnol, 2008, 78 (3): 551-557
17 Bao R, Yu S, Wu J. Contaminants conversion processes and removal by aerobic granular sludge at low temperature [J]. J Biotechnol, 2008, 136: 670
18 Bao R, Yu S, Shi W. Aerobic granules formation and nutrients removal characteristics in sequencing batch airlift reactor at low temperature [J]. J Hazard Mater, 2009, 168 (2-3): 1334-1340
19 Mahoney EM, Varangu LK, Cairns WL. The effect of calcium on microbial aggregation during UASB reactor start-up [J]. Water Sci Technol, 1987, 19 (1-2): 249-260
20 Jiang H, Tay J, Liu Y. Ca2+ augmentation for enhancement of aerobically grown microbial granules in sludge blanket reactors [J]. Biotechnol Lett, 2003, 25 (2): 95-99
21 Li X, Liu Q, Yang Q. Enhanced aerobic sludge granulation in sequencing batch reactor by Mg2+ augmentation [J]. Bioresour Technol, 2009, 100 (1): 64-67
22 McSwain BS, Irvine RL, Wilderer PA. The influence of settling time on the formation of aerobic granules [J]. Water Sci Technol, 2004, 50 (10): 195-202
23 Beun JJ, Hendriks A, van Loosdrecht MCM. Aerobic granulation in a sequencing batch reactor [J]. Water Res, 1999, 33 (10): 2283-2290
24 Williams JC, de los Reyes FL. Microbial community structure of activated sludge during aerobic granulation in an annular gap bioreactor [J]. Water Sci Technol, 2006, 54 (1): 139-146
25 Yang S, Li X, Yu H. Formation and characterisation of fungal and bacterial granules under different feeding alkalinity and pH conditions [J]. Proc Biochem, 2008, 43 (1): 8-14
26 Liu Y, Tay J. Influence of cycle time on kinetic behaviors of steady-state aerobic granules in sequencing batch reactors [J]. Enzyme Microbiol Technol, 2007, 41 (4): 516-522
27 Zheng Y, Yu H, Liu S. Formation and instability of aerobic granules under high organic loading conditions [J]. Chemosphere, 2006, 63 (10): 1791-1800
28 Wang Z, Li Y, Liu Y. The influence of short-term starvation on aerobic granules [J]. Proc Biochem, 2006, 41 (12): 2373-2378
29 McSwain BS, Irvine RL, Wilderer PA. The effect of intermittent feeding on aerobic granule structure [J]. Water Sci Technol, 2004, 49 (11-12): 19-25
30 Liu Y, Tay J. Influence of starvation time on formation and stability of aerobic granules in sequencing batch reactors [J]. Bioresour Technol, 2008, 99 (5): 980-985
31 Qin L, Tay J, Liu Y. Selection pressure is a driving force of aerobic granulation in sequencing batch reactors [J]. Proc Biochem, 2004, 39 (5): 579-584
32 Jiang H, Tay J, Tay S. Aggregation of immobilized activated sludge cells into aerobically grown microbial granules for the aerobic biodegradation of phenol [J]. Lett Appl Microbiol, 2002, 35 (5): 439-445
33 Sunil A, Lee D, Lai J. Effects of aeration intensity on formation of phenol-fed aerobic granules and extracellular polymeric substances [J]. Appl Microbiol Biotechnol, 2007, 77 (1): 175-182
34 Liu Y, Liu Q. Causes and control of filamentous growth in aerobic granular sludge sequencing batch reactors [J]. Biotechnol Adv, 2006, 24 (1): 115-127
35 Li J, Garny K, Lindenblatt C. Comparison of some characteristics of aerobic granules and sludge flocs from sequencing batch reactors [J]. Water Sci Technol, 2007, 55 (8-9): 403-411
36 de Kreuk MK, Pronk M, van Loosdrecht MCM. Formation of aerobic granules and conversion processes in an aerobic granular sludge reactor at moderate and low temperature [J]. Water Res, 2005, 39 (18): 4476-4484
37 Liu Y, Lin Y, Yang S. A balanced model for biofilms developed at different growth and detachment forces [J]. Proc Biochem, 2003, 38 (12): 1761-1765
38 Mu Y, Yu H. Rheological and fractal characteristics of granular sludge in an upflow anaerobic reactor [J]. Water Res, 2006, 40 (19): 3596-3602
39 Mu Y, Ren T, Yu H. Drag coefficient of porous and permeable microbial granules [J]. Environ Sci Technol, 2008, 42 (5): 1718-1723
40 Sunil A, Chang C, Lee D. Hydraulic characteristics of aerobic granules using size exclusion chromatography [J]. Biotechnol Bioeng, 2008, 99 (4): 791-799
41 李军, 周延年, 何梅. 城市污水处理厂好氧颗粒污泥的特性[J]. 应用与环境生物学报, 2008, 14 (5): 640-643 [Li J, Zhou Y, He M. Characteristics of aerobic granules from a municipal wastewater treatment plant [J]. Chin J Appl Environ Biol, 2008, 14 (5): 640-643]
42 Liu Y, Yang S, Tay J. Cell hydrophobicity is a triggering force of biogranulation [J]. Enz Microbiol Technol, 2004, 34 (5): 371-379
43 SchmidtJE, Ahring BK. Extracellular polymers in granular sludge from different upflow anaerobic sludge blanket reactors [J]. Appl Microbiol Biotechnol, 1994, 42 (2-3): 457-462
44 McSwain BS, Irvine RL, Wilderer PA. Composition and distribution of extracellular polymeric substances in aerobic flocs and granular sludge [J]. Appl Environ Microbiol, 2005, 71 (2): 1051-1057
45 Whiteley AS, Bailey MJ. Bacterial community structure and physiological state within an industrial phenol bioremediation system [J]. Appl Environ Microbiol, 2000, 66 (6): 2400-2407
46 Snaidr J, Amann R, Huber I. Phylogenetic analysis and in situ identification of bacteria in activated sludge [J]. Appl Environ Microbiol, 1997, 63 (7): 2884-2896
47 Winker M, Kleerebezem R, de Bruin L. Microbial diversity differences within aerobic granular sludge and activated sludge flocs [J]. Appl Microbiol Biotechnol, 2013, 97 (16): 7447-7458
48 Bassin J, Pronk M, Muyzer G. Effect of elevated salt concentrations on the aerobic granular sludge process: linking microbial activity within microbial community structure [J]. Appl Environ Microbiol, 2011, 77 (22): 7942-7953
49 Ebrahimi S, Gabus S, Rohrbach-Brandt E. Performance and microbial community composition dynamics of aerobic granular sludge from sequencing batch bubble column reactors operated at 20 degrees, 30 degrees and 35 degrees [J]. Appl Microbiol Biotechnol, 2010, 87 (4): 1555-1568
50 Zhao Y, Huang J, Zhao H. Microbial community and N removal of aerobic granular sludge at high COD and N loading rates [J]. Bioresour Technol, 2013, 143: 439-446
51 陈国科, 黄钧, 毕京芳. 好氧颗粒污泥耐受高碳氮负荷过程中的群感效应[J]. 应用与环境生物学报, 2014, 20 (1): 73-79 [Chen G, Huang J, Bi J. Quorum sensing of aerobic granular sludge tolerating high carbon and nitrogen loads [J]. Chin J Appl Environ Biol, 2014, 20 (1): 73-79]
52 Lv J, Wang Y, Zhong C. The effect of quorum sensing and extracellular proteins on the microbial attachment of aerobic granular activated sludge [J]. Bioresour Technol, 2013, 152: 53-58
53 Wan C, Zhang P, Lee D. Disintegration of aerobic granules: role of second messenger cyclic di-GMP [J]. Bioresour Technol, 2013, 146: 330-335
54 Zhang S, Yu X, Guo F. Effect of interspecies quorum sensing on the formation of aerobic granular sludge [J]. Water Sci Technol, 2011, 64 (6): 1284-1290
55 Feng L, Wu Z, Yu X. Quorum sensing in water and wastewater treatment biofilms [J]. J Environ Biol, 2013, 34: 437-444
56 Hu Z, Lotti T, van Loosdrecht MCM. Nitrogen removal by a nitritation-anammox bioreactor at low temperature [J]. Appl Environ Microbiol, 2013, 79 (8): 2807-2812
57 Jang A, Yoon Y, Bishop PL. Characterization and evaluation of aerobic granules in sequencing batch reactor [J]. J Biotechnol, 2003, 105 (1-2): 71-82
58 Mosquera-Corral A, de Kreuk MK, van Loosdrecht MCM. Effects of oxygen concentration on N-removal in an aerobic granular sludge reactor [J]. Water Res, 2005, 39 (12): 2676-2686
59 Picioreanu C, van Loosdrecht MCM, Heijnen JJ. Mathematical modeling of biofilm structure with a hybrid differential-discrete cellular automaton approach [J]. Biotechnol Bioeng, 1998, 58 (1): 101-116
60 de Kreuk MK, Heijnen JJ, van Loosdrecht MCM. Simultaneous COD, nitrogen, and phosphate removal by aerobic granular sludge [J]. Biotechnol Bioeng, 2005, 90 (6): 761-769
61 Lopez-Vazquez CM, Christine M, van Loosdrecht MCM. Modeling the PAO–GAO competition: effects of carbon source, pH and temperature [J]. Water Res, 2009, 43 (2): 450-462
62 Lin Y, Liu Y, Tay J. Development and characteristics of phosphorous-accumulating granules in sequencing batch reactor [J]. Appl Microbiol Biotechnol, 2003, 62 (4): 430-435
63 Cassidy DP, Belia E. Nitrogen and phosphorus removal from an abattoir wastewater in a SBR with aerobic granular sludge [J]. Water Res, 2005, 39 (19): 4817-4823
64 Lemaire R, Yuan Z, Blackall LL. Microbial distribution of Accumulibacter spp. and Competibacter spp. in aerobic granules from a lab-scale biological nutrient removal system [J]. Environ Microbiol, 2008, 10 (2): 354-363
65 Schwarzenbeck N, Erley R, Wilderer PA. Aerobic granular sludge in an SBR-system treating wastewater rich in particulate matter [J]. Water Sci Technol, 2004, 49 (11-12): 41-46
66 Moy BY, Tang J, Toh SK. High organic loading influences the physical characteristics of aerobic sludge granules [J]. Lett Appl Microbiol, 2002, 34 (6): 407-412
67 Liu Y, Xu H, Yang S. A general model for biosorption of Cd2+ Cu2+ and Zn2+ by aerobic granules [J]. J Biotechnol, 2003, 102 (3): 233-239
68 Liu Y, Yang S, Xu H. Biosorption kinetics of Cadmium (II) on aerobic granular sludge [J]. Proc Biochem, 2003, 38 (7): 997-1001
69 Xu H, Liu Y, Tay J. Effect of pH on nickel biosoption by aerobic granular sludge [J]. Bioresour Technol, 2005, 97 (2): 359-363
70 Sun X, Liu C, Ma Y. Enhanced Cu (II) and Cr(VI) biosorption capacity on poly (ethylenimine ) grafted aerobic granular sludge [J]. Coll Surf B, 2011, 82 (2): 456-462
71 Tay S, Moy BY, Tay J. Rapid cultivation of stable aerobic phenol-degrading granules using acetate-fed granules as microbial seed [J]. J Biotechnol, 2005, 115 (4): 387-395
72 Stuermer DH, Ng DJ, Morris CJ. Organic contaminants in groundwater near an underground coal gasification site in northeastern Wyoming [J]. Environ Sci Technol, 1982, 16 (9): 582-587
73 Yi S, Zhuang W, Tay J. Biodegradation of p-nitrophenol by aerobic granules in a sequencing batch reactor [J]. Environ Sci Technol, 2006, 40 (7): 2396-2401
74 Zhang L, Chen J, Fang F. Biodegradation of methyl t-butyl ether by aerobic granules under a cosubstrate condition [J]. Appl Microbiol Biotechnol, 2008, 78 (3): 543-550
75 Nancharaiah YV, Joshi HM, Mohan T. Aerobic granular biomass: a novel biomaterial for efficient uranium removal [J]. Curr Sci, 2006, 91 (4): 503-509
76 Schwarzenbeck N, Erley R, McSwain BS. Treatment of malting wastewater in a granular sludge sequencing batch reactors [J]. Acta Hydrochim Hydrobiol, 2004, 32 (1): 16-24
77 de Kreuk MK, Kishida N, van Loosdrecht MCM. Behavior of polymeric substrates in an aerobic granular sludge system [J]. Water Res, 2010, 44 (20): 5929-5938
78 韩春威. 水解酸化-好氧工艺处理屠宰废水的试验研究[D]. 哈尔滨: 哈尔滨工业大学, 2007 [Han C. Experimental study on treatment of slaughterhouse wastewater with hydrolytic acidification-aerobic process [D]. Harbin: Harbin Institute of Technology, 2007]
79 赫俊国, 李建政, 张金松. 生物膜-活性污泥共生系统处理屠宰废水的研究[J]. 哈尔滨工业大学学报, 2003, 35 (4): 424-427 [He JG, Li JZ, Zhang JS. Treatment of slaughter sewage with slime-activated sludge co-exist system [J]. J Harbin Inst Technol, 2003, 35 (4): 424-427]
80 Kolenbrander PE, Andersen RN, Holdeman LV. Coaggregation of oral bacteroide species with other bacteria: central role in coaggregation bridges and competitions [J]. Infec Immunol, 1985, 48 (3): 741-746
81 Palmer RJ, Kazmerzak K, Kolenbrander PE. Mutualism versus independence: strategies of mixed-species oral biofilms in vitro using saliva as the sole nutrient source [J]. Infec Immunol, 2001, 69 (9): 5794-5804
82 Tay J, Liu Q, Liu Y. Microscopic observation of aerobic granulation in sequential aerobic sludge blanket reactor [J]. J Appl Microbiol, 2001, 91 (1): 168-175
83 Liu Y, Tay J. The essential role of hydrodynamic shear force in the formation of biofilm and granular sludge [J]. Water Res, 2002, 36 (7): 1653-1665
84 Liu Y, Yang S, Tay J. Aerobic granules: a novel zinc biosorbent [J]. Lett Appl Microbiol, 2002, 35 (6): 548-551
85 Tay J, Yang S, Liu Y. Hydraulic selection pressure-induced nitrifying granulation in sequencing batch reactors [J]. Appl Microbiol Biotechnol, 2002, 59 (2-3): 332-337
86 Wang Q, Du G, Chen J. Aerobic granular sludge cultivated under the selective pressure as a driving force [J]. Proc Biochem, 2004, 39 (5): 557-563
87 Wang X, Zhang H, Yang F. Improved stability and performance of aerobic granules under stepwise increased selection pressure [J]. Enz Microbiol Technol, 2007, 41 (3): 205-211
88 Trinet F, Heim R, Amar D. Study of biofilm and fluidization of bioparticles in a three-phase fluidized-bed reactor [J]. Water Sci Technol, 1991, 23 (7-9): 1347-1354
89 Sutherland IW. Polysaccharases for microbial exopolysaccharides [J]. Carbohydr Polym, 1999, 38 (4): 319-328
90 Bossier P, Verstraete W. Triggers for microbial aggregation in activated sludge [J]. Appl Microbiol Biotechnol, 1996, 45 (1-2): 1-6
91 Tay J, Liu Q, Liu Y. The role of cellular polysaccharides in the formation and stability of aerobic granules [J]. Lett Appl Microbiol, 2001, 33 (3): 222-226
92 Di Iaconi C, RamadoriR, Lopez A. Influence of hydrodynamic shear forces on properties of granular biomass in a sequencing batch biofilter reactor [J]. Biochem Eng J, 2006, 30 (2): 152-157
93 Yang S, Tay J, Liu Y. Inhibition of free ammonia to the formation of aerobic granules [J]. Biochem Eng J, 2004, 17 (1): 41-48
94 Cammarota M, SantAnna GL. Metabolic blocking of exopolysaccharides synthesis: effects on microbial adhesion and biofilm accumulation [J]. Biotechnol Lett, 1998, 20 (1): 1-4
95 Chen M, Lee D, Tay J. Distribution of extracellular polymeric substances in aerobic granules [J]. Appl Microbiol Biotechnol, 2007, 73 (6): 1463-1469
96 Wang Z, Liu Y, Tay J. Distribution of EPS and cell surface hydrophobicity in aerobic granules [J]. Appl Microbiol Biotechnol, 2005, 69 (4): 469-473
97 Sunil A, Lee D, Tay J. Extracellular polymeric substances and structural stability of aerobic granule [J]. Water Res, 42 (6-7): 1644-1650
98 Hao X, van Loosdrecht MCM, Heijnen JJ. Model-based evaluation of kinetic, biofilm and process parameters in a one-reactor ammonium removal process [J]. Biotechnol Bioeng, 2002, 77 (3): 266-277
99 Yang S, Liu Q, Tay J. Growth kinetics of aerobic granules developed in sequencing batch reactors [J]. Lett Appl Microbiol, 2004, 38 (2): 106-112
100 Vel M, Keller J, Yuan Z. Effect of free ammonia on the respiration and growth processes of an enriched nitrobacter culture [J]. Water Res, 2007, 41 (4): 826-834
101 Jiang H, Tay J, Maszenan AM. Enhanced phenol biodegradation and aerobic granulation by two coaggregating bacterial strains [J]. Environ Sci Technol, 2006, 40 (19): 6137-6142
102 Jiang H, Tay S, Maszenan AM. Physiological traits of bacterial strains isolated from phenol-degrading aerobic granules [J]. FEMS Microbiol Ecol, 2006, 57 (2): 182-191
103 Ni B, Yu H, Sun Y. Modeling simultaneous autotrophic and heterotrophic growth in aerobic granules [J]. Water Res, 2008, 42 (6-7): 1583-1594
104 Ni B, Yu H. Storage and growth of denitrifiers in aerobic granules: part I. model development [J]. Biotechnol Bioeng, 2008, 99 (2): 314-323
105 Ni B, Yu H, Xie W. Storage and growth of denitrifiers in aerobic granules: part II. model calibration and verification [J]. Biotechnol Bioeng, 2008, 99 (2): 324-332
106 Su K, Yu H. Formation and characterization of aerobic granules in a sequencing batch reactor treating soybean-processing wastewater [J]. Environ Sci Technol, 2005, 39 (8): 2818-2827
107 Ni B, Yu H. Mathematical modeling of aerobic granular sludge: a review [J]. Biotechnol Adv, 2010, 28 (6): 895-909
108 de Kreuk MK, Picioreanu C, van Loosdrecht MCM. Kinetic model of a granular sludge SBR: influences on nutrient removal [J]. Biotechnol Bioeng, 2007, 97 (4): 801-815
109 de Kreuk MK, Kishida N, van Loosdrecht MCM. Aerobic granular sludge - state of the art [J]. Water Sci Technol, 2007, 55 (8-9): 75-81
110 Xavier J, de Kreuk MK, van Loosdrecht MCM. Multi-scale individual-based model of microbial and bioconversion dynamics in aerobic granular sludge [J]. Environ Sci Technol, 2007, 41 (18): 6410-6417
[1]李军,** 周延年 何梅 王亚宜 韦苏.城市污水处理厂好氧颗粒污泥的特性*[J].应用与环境生物学报,2008,14(05):640.
[2]陈国科,黄钧,毕京芳,等.好氧颗粒污泥耐受高碳氮负荷过程中的群体感应[J].应用与环境生物学报,2014,20(01):73.[doi:10.3724/SP.J.1145.2014.00073]
CHEN Guoke,HUANG Jun,BI Jingfang,et al.Quorum sensing of aerobic granular sludge tolerating high carbon and nitrogen loads[J].Chinese Journal of Applied & Environmental Biology,2014,20(04):73.[doi:10.3724/SP.J.1145.2014.00073]
[3]关梦龙,黄钧,毕京芳,等.好氧颗粒污泥代谢高浓度有机废水的数学模拟[J].应用与环境生物学报,2014,20(06):1063.[doi:10.3724/SP.J.1145.2014.04005]
GUAN Menglong,HUANG Jun,BI Jingfang,et al.Mathematical simulation of aerobic granular sludge metabolizing high-concentration organic wastewater[J].Chinese Journal of Applied & Environmental Biology,2014,20(04):1063.[doi:10.3724/SP.J.1145.2014.04005]
[4]董晶晶,吴迪,马柯,等.好氧颗粒污泥工艺强化脱氮研究进展[J].应用与环境生物学报,2018,24(01):177.[doi:10.19675/j.cnki.1006-687x.2017.02008]
DONG Jingjing,WU Di,MA Ke,et al.Review on enhanced denitrification of aerobic granular sludge technology[J].Chinese Journal of Applied & Environmental Biology,2018,24(04):177.[doi:10.19675/j.cnki.1006-687x.2017.02008]
[5]冯殿宝,王维红,王燕杉,等.以黏土为载体的好氧颗粒污泥培养及其对番茄废水的处理[J].应用与环境生物学报,2019,25(01):199.[doi:10.19675/j.cnki.1006-687x.2018.03033]
FENG Dianbao,WANG Weihong**,WANG Yanshan & SU Kuizu.Clay-cultured aerobic granular sludge and its use in the treatment of tomato-paste processing wastewater[J].Chinese Journal of Applied & Environmental Biology,2019,25(04):199.[doi:10.19675/j.cnki.1006-687x.2018.03033]
[6]郑婧婧,张智明,徐向阳,等.污水处理好氧颗粒污泥生产运行中的结构与稳定性[J].应用与环境生物学报,2021,27(06):1672.[doi:10.19675/j.cnki.1006-687x.2020.07025]
ZHENG Jingjing,ZHANG Zhiming,XU Xiangyang,et al.Structure and stability of aerobic granular sludge during operation in wastewater treatment[J].Chinese Journal of Applied & Environmental Biology,2021,27(04):1672.[doi:10.19675/j.cnki.1006-687x.2020.07025]