|本期目录/Table of Contents|

[1]陈娇,姜玉松,张义正,等.甘薯LEA2基因的克隆与表达分析[J].应用与环境生物学报,2014,20(02):204-210.[doi:10.3724/SP.J.1145.2014.00204]
 CHEN Jiao,JIANG Yusong,ZHANG Yizheng,et al.Cloning and expression analyses of LEA2 gene from Ipomoea batatas[J].Chinese Journal of Applied & Environmental Biology,2014,20(02):204-210.[doi:10.3724/SP.J.1145.2014.00204]
点击复制

甘薯LEA2基因的克隆与表达分析()
分享到:

《应用与环境生物学报》[ISSN:1006-687X/CN:51-1482/Q]

卷:
20卷
期数:
2014年02期
页码:
204-210
栏目:
研究论文
出版日期:
2014-04-25

文章信息/Info

Title:
Cloning and expression analyses of LEA2 gene from Ipomoea batatas
作者:
陈娇姜玉松张义正谭雪梅
1四川大学生命科学学院生物资源与生态环境教育部重点实验室 成都 610064 2重庆文理学院生命科学学院 永川 402160
Author(s):
CHEN Jiao JIANG Yusong ZHANG Yizheng TAN Xuemei
1College of Life Sciences, Sichuan University, Key Laboratory of Resource Biology and Eco-environment, Ministry of Education, Chengdu 610064, China 2Chongqing University of Art and Sciences, Yongchuan 402160, China
关键词:
甘薯LEA2基因克隆数字表达谱盐胁迫
Keywords:
sweet potato LEA2 gene cloning digital gene expression profiling salt stress
分类号:
Q78 : S531.034
DOI:
10.3724/SP.J.1145.2014.00204
文献标志码:
A
摘要:
胚胎发育晚期丰富蛋白(Late embryogenesis abundant, LEA)是植物在逆境胁迫下产生的一种应激蛋白质,具有较高的亲水性和热稳定性,与植物抗逆功能密切相关,研究LEA家族基因对于甘薯抗逆性分子育种具有重要意义. 通过对甘薯(徐薯18)转录组数据库搜寻时发现编码LEA2的转录本,随后对该转录本进行了克隆和测序分析,利用数字表达谱(Digital Gene Expression Profiling,DGE)和半定量RT-PCR分析了Ib-LEA2在不同组织和不同发育阶段的表达图谱. 为进一步了解Ib-LEA2在生物体响应盐胁迫中的作用,将Ib-LEA2连接原核表达载体pET-32a,用大肠杆菌BL21(DE3)菌株进行盐胁迫的耐受分析. 结果显示:Ib-LEA2完整的开放阅读框(ORF)长度为942 bp,编码313个氨基酸残基. 进一步研究发现,在甘薯组织内同时存在3个高度同源的LEA2基因型 (核苷酸序列>99%),分别命名为Ib-LEA2a、Ib-LEA2b和Ib-LEA2c. 数字表达谱和半定量RT-PCR的结果显示Ib-LEA2在不同组织和发育阶段具有不同的表达图谱,在茎中的表达量远远高于叶和根. 大肠杆菌BL21(DE3)菌株盐胁迫的结果显示,较之对照菌株,表达Ib-LEA2的菌株能够更好地耐受高浓度的NaCl. 研究表明,Ib-LEA2对盐胁迫有一定的响应能力,能够保护细胞免受高盐的毒害.
Abstract:
Late embryogenesis abundant (LEA) proteins, which are produced in plant under stress, have high hydrophilic activity and thermal stability. They are closely related to plant defense reactions. Researches on LEA proteins are important for molecular breeding of sweet potato under stress. This research analyzed the expression pattern of Ib-LEA2 in vivo, and investigated the function of LEA2 in defense of salt stress. Transcripts encoding LEA2 proteins were found when searching the transcriptome database of sweet potato. Subsequently, Ib-LEA2 was cloned and sequenced. Digital gene expression profiling (DGE) and semi-quantitative RT-PCR were chosen for study expression of Ib-LEA2 in different tissues and under different developmental stages. In order to further study the function in response to salt stress, Ib-LEA2 coding sequence was cloned into pET-32a expression vector and then expressed in E. coli BL21(DE3). Result shows that Ib-LEA2 had an open reading frame (ORF) of 942 bp in length, which encoded 313 amino acids. Further analysis revealed three highly homologous genotypes for Ib-LEA2 (nucleotide sequences similarity > 99%), named Ib-LEA2a, Ib-LEA2b and Ib-LEA2c. Digital gene expression profiling (DGE) and semi-quantitative assay showed that Ib-LEA2 proteins were differentially expressed in different tissues and under different developmental stages, and that the expression in stems was much higher than in leaves and roots. The growth curves of E. coli BL21(DE3) showed that the strain expressing Ib-LEA2 can better tolerate high concentration of salt than the control. Our work revealed that Ib-LEA2 could response to stress, protecting cells from high concentration of salt. The results laid a theoretical foundation to the molecular breeding of sweet potato, promoting the researches in salt-tolerance in plants.

参考文献/References:

1 刘洋, 邢鑫, 李德全. LEA蛋白的分类与功能研究进展[J]. 生物技术通报, 2011, 8: 36-43 [Liu Y, Xing X, Li DQ. Studies on the Classification and Function of LEA Proteins [J]. Biotechl Bull, 2011, 8: 36-43]
2 Close TJ. Dehydrins: emergence of a biochemical role of a family of plant dehydrins proteins[J]. Physiol Plant, 1996, 97 (4): 795-803
3 Jayaprakash TL, Ramamohan G, Krishnaprasad BT, Ganeshkumar, Prasad TG, Mathew MK, Udayakumar M. Genotypic variability in differential expression of lea2 and lea3 genes and proteins in response to salinity stress in fingermillet (Eleusine coracana Gaertn) and rice (Oryza sativa L.) seedlings[J]. Ann Bot, 1998, 82: 513-522
4 Soulages JL, Kim K, Arrese EL, Walters C, Cushman JC. Conformation of a group 2 late embryogenesis abundant protein from soybean. evidence of poly (L-proline)-type II structure [J]. Plant Physiol, 2003, 131: 963-975
5 Kasuga M, Miura S, Shinozaki K, Yamaguchi-Shinozaki K. A combination of the Arabidopsis DREB1a gene and stress-inducible rd29A promoter improved drought- and low-temperature stress tolerance in tobacco by gene transfer [J]. Plant Cell Physiol, 2004, 3 (45): 346-350
6 Campos F, Zamudio F, Covarrubias AA. Two different late embryogenesis abundant proteins from Arabidopsis thaliana contain specific domains that inhibit Escherichia coli growth [J]. Biochem Biophys Res Commun, 2006, 342: 406-413
7 Firon N, LaBonte D, Villordon A, McGregor C, K?r Y, Pressman E. Botany and Physiology: Storage Root Formation and Development [M]. The sweetpotato, 2009. 13-26
8 Padmaja G. Uses and Nutritional Data of Sweetpotato[M]. The sweetpotato, 2009. 189-234
9 李强, 刘庆昌, 马代夫, 臧宁. 甘薯遗传转化研究现状、问题及展望[J]. 分子植物育种, 2005, 3 (1): 99-106 [Li Q, Liu QC, Ma DF, Zang N, Hou FY. Advances, problems and prospects in genetic transformation on sweetpotato [J]. Mol Plant Breed, 2005, 3 (1): 99-106]
10 Park SC, Kim YH, Jeong JC, Kim CM, Lee HS, Bang JW, Kwak SS. Sweetpotato late embryogenesis abundant 14 (IbLEA14) gene influences lignification and increases osmotic- and salt stress-tolerance of transgenic calli [J]. Planta, 2011, 233: 621-634
11 Senthilkumar R, Yeh KW. Multiple biological functions of sporamin related to stress tolerance in sweet potato (Ipomoea batatas Lam) [J]. Biotechnol Adv, 2012, 30: 1309-1317
12 Kim YH, Jeong JC, Park S, Lee HS, Kwak SS. Molecular characterization of two ethylene response factor genes in sweetpotato that respond to stress and activate the expression of defense genes in tobacco leaves [J]. J Plant Physiol, 2012, 169: 1112-1120
13 Weising K, Atkinson RG, Gardner RC. Genomic fingerprinting by microsatellite-primed PCR: a critical evaluation [J]. Genome Res, 1995, 4: 249-255
14 Tao X, Gu YH, Wang HY, Zheng W, Li X, Zhao CW, Zhang YZ. Digital gene expression analysis based on integrated de novo transcriptome assembly of sweet potato [Ipomoea batatas (L.) Lam.] [J]. PLoS ONE, 2012, 7: e36234
15 Robinson MD, McCarthy DJ, Smyth GK. edgeR: a bioconductor package for differential expression analysis of digital gene expression data [J]. Bioinformatics, 2010, 26: 139-140
16 Li Y, Gu YH, Qin H, Zhang YZ. Two pairs of sucrose transporters in Ipomoea batatas (L.) Lam are predominantly expressed in sink leaves and source leaves respectively [J]. Plant Sci, 2010, 179: 250-256
17 Chang MJ, Tao X, Gu YH, Lin GX, Shao HH, Cao QH, Zhang YZ. Cloning and characterization of the 14-3-3 protein gene from Ipomoea batatas (L.) Lam [J]. Afr J Microbiol Res, 2012, 6 (9): 1990-1999
18 Cao QH, Shao HH, Gu YH, Tao X, Huang CL, Zhang YZ. Cloning, characterization and expression analysis of HSP70 gene from sweet potato [J]. Afr J Microbiol Res, 2012, 6 (34): 6325-6332
19 Jiang YS, Wang JX, Tao X, Zhang YZ. Characterization and expression of Rubisco activase genes of Ipomoea batatas [J]. Mol Biol Rep, 2013, 40 (11): 6309-6321
20 Krishnan R, Magoon ML, KV B. Cytological evidence on the origin of sweet potato [J]. Theor Appl Genet, 1970, 40: 360-366
21 Guan ZY, Su YJ, Teng NJ, Chen SM, Sun HN, Li CL, Chen FD. Morphological, physiological, and structural responses of two species of Artemisiato NaCl stress [J]. Sci World J, 2013, 2013: 309808
22 Sahi C, Singh A, Kumar K, Blumwald E, Grover A. Salt tolerance response in rice: genetics, molecular biology, and comparative genomics [J]. Funct Integr Genomics, 2006, 6: 263-284
23 Lan Y, Cai D, Zheng YY, Expression in Escherichia coli of three different soybean late embryogenesis abundant (LEA) genes to investigate enhanced stress tolerance [J]. J Integ Plant Biol, 2005, 47 (5): 613-621
24 Chourey K, Ramani S, Apte SK. Accumulation of LEA proteins in salt (NaCl) stressed young seedlings of rice (Oryza sativa L.) cultivar Bura Rata and their degradation during recovery from salinity stress [J]. J Plant Physiol, 2003, 160: 1165-1174
25 Palakolanu SR, Guda MR, Prachi P, Kottakota C, Malireddy KR. Cloning and molecular characterization of a gene encoding late embryogenesis abundant protein from Pennisetum glaucum: protection against abiotic stresses [J]. Mol Biol Rep, 2012, 39: 7163-7174

相似文献/References:

[1]靳艳玲,甘明哲,周玲玲,等.4个甘薯品种不同生育期的乙醇发酵比较[J].应用与环境生物学报,2009,15(02):262.[doi:10.3724/SP.J.1145.2009.00267]
 JIN Yanling,GAN Mingzhe,et al.Ethanol Production with 4 Varieties of Sweet Potato at Different Growth Stages[J].Chinese Journal of Applied & Environmental Biology,2009,15(02):262.[doi:10.3724/SP.J.1145.2009.00267]
[2]陶向,张勇为,姜玉松,等.甘薯块根储藏过程中的淀粉含量变化[J].应用与环境生物学报,2010,16(05):741.[doi:10.3724/SP.J.1145.2010.00741]
 TAO Xiang,ZHANG Yongwei,JIANG Yusong,et al.Changes in Root Starch Contents of Sweet Potato Cultivars During Storage[J].Chinese Journal of Applied & Environmental Biology,2010,16(02):741.[doi:10.3724/SP.J.1145.2010.00741]
[3]杨俊仕,周后珍,李国欣,等.组合工艺处理甘薯燃料乙醇糟液[J].应用与环境生物学报,2010,16(05):730.[doi:10.3724/SP.J.1145.2010.00730]
 YANG Junshi,ZHOU Houzhen,LI Guoxin,et al.Treatment of Wastewater from Alcohol Fuel Production with Sweet Potato by Combined Process[J].Chinese Journal of Applied & Environmental Biology,2010,16(02):730.[doi:10.3724/SP.J.1145.2010.00730]
[4]李岩,王海燕,张义正.甘薯蔗糖转运蛋白IbSUT1x在酵母细胞中的定位[J].应用与环境生物学报,2010,16(06):798.[doi:10.3724/SP.J.1145.2010.00798]
 LI Yan,WANG Haiyan,ZHANG Yizheng.Localization of IbSUT1x Protein from Ipomoea batatas (L.) Lam in Yeast Cells[J].Chinese Journal of Applied & Environmental Biology,2010,16(02):798.[doi:10.3724/SP.J.1145.2010.00798]
[5]段鹏,张义正,谭雪梅.甘薯块根腐烂真菌的分离和鉴定[J].应用与环境生物学报,2011,17(02):260.[doi:10.3724/SP.J.1145.2011.00260]
 DUAN Peng,ZHANG Yizheng,TAN Xuemei.Isolation and Identification of Fungi from Rotted Tuber of Sweet Potato[J].Chinese Journal of Applied & Environmental Biology,2011,17(02):260.[doi:10.3724/SP.J.1145.2011.00260]
[6]王广珺,何明雄,张义正.运动发酵单胞菌共表达α-淀粉酶和葡萄糖淀粉酶发酵甘薯生产乙醇[J].应用与环境生物学报,2012,18(05):785.[doi:10.3724/SP.J.1145.2012.00785]
 WANG Guangjun,HE Mingxiong,ZHANG Yizheng.Co-expression of α-amylase and Glucoamylase in Zymomonas mobilis and Direct Ethanol Production from Sweet Potato[J].Chinese Journal of Applied & Environmental Biology,2012,18(02):785.[doi:10.3724/SP.J.1145.2012.00785]
[7]赖先军,古英洪,王海燕,等.甘薯Sporamin家族基因克隆与表达分析[J].应用与环境生物学报,2013,19(02):215.[doi:10.3724/SP.J.1145.2013.00215]
 LAI Xianjun,GU Yinghong,WANG Haiyan,et al.Cloning and Expression Analyses of Sporamin Family Genes in Sweet Potato[J].Chinese Journal of Applied & Environmental Biology,2013,19(02):215.[doi:10.3724/SP.J.1145.2013.00215]

备注/Memo

备注/Memo:
国家科技支撑计划项目(2007BAD78B03)和四川省“十一五”重点科技攻关项目(07SG111-003-1)资助
更新日期/Last Update: 2014-05-04