|本期目录/Table of Contents|

[1]侯佩,冯媛媛,余桂容,等.拟南芥XERICO基因诱导表达提高转基因植物的耐旱性[J].应用与环境生物学报,2013,19(06):969-973.[doi:10.3724/SP.J.1145.2013.00969]
 HOU Pei,FENG Yuanyuan,YU Guirong,et al.Improved Drought Tolerance of Transgenic Arabidopsis thaliana by Inducible Expression of XERICO Gene[J].Chinese Journal of Applied & Environmental Biology,2013,19(06):969-973.[doi:10.3724/SP.J.1145.2013.00969]
点击复制

拟南芥XERICO基因诱导表达提高转基因植物的耐旱性()
分享到:

《应用与环境生物学报》[ISSN:1006-687X/CN:51-1482/Q]

卷:
19卷
期数:
2013年06期
页码:
969-973
栏目:
研究论文
出版日期:
2013-12-25

文章信息/Info

Title:
Improved Drought Tolerance of Transgenic Arabidopsis thaliana by Inducible Expression of XERICO Gene
作者:
侯佩冯媛媛余桂容任鹏飞曾德二
(1四川大学生命科学学院生物资源与生态环境教育部重点实验室/水力学与山区河流开发保护国家重点实验室 成都 610064) (2成都师范学院科学教育系 成都 611130)
Author(s):
HOU Pei FENG Yuanyuan YU Guirong REN Pengfei ZENG De’er
(1Key Laboratory of Ministry of Education for Bio-resources and Eco-environment, College of Life Sciences, and State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610064, China) (2Department of Science Education, Chengdu Normal University, Chengdu, Sichuan 611130)
关键词:
拟南芥SARK启动子XERICO基因脱落酸耐旱性
Keywords:
Arabidopsis thaliana SARK promoter XERICO gene ABA drought tolerance
分类号:
Q943.2
DOI:
10.3724/SP.J.1145.2013.00969
文献标志码:
A
摘要:
构建了PSARK::XERICO植物表达载体,并将其转化到模式植物拟南芥中进行生理表型分析,以期为植/作物抗旱研究提供参考. 利用RT-PCR技术从拟南芥幼苗cDNA中扩增出XERICO基因全长,并从pSARK-IPT质粒中分离出SARK启动子,构建植物表达载体pBI121-pSARK-XERICO,然后将构建的表达载体通过浸花法转入野生型拟南芥中,通过抗性筛选和遗传分离分析后获得纯系,对获得的纯合植株进行PCR鉴定,并对其进行种子萌发期间的ABA敏感性分析,以及对它们早期幼苗生长期间经盐分和甘露醇胁迫处理后的表型观察结果进行分析. 此外,还对转PSARK::XERICO和野生型拟南芥进行了耐旱性分析. 与野生型和xerico突变体相比,转PSARK::XERICO拟南芥对1.0 mmol/L ABA、100 mmol/L NaCl和200 mmol/L甘露醇均较敏感;与野生型相比,水分亏缺诱导的XERICO基因在拟南芥中的表达增强了植物对干旱胁迫的耐受性. 因此,本研究表明PSARK::XERICO可用于培育耐旱的植物或作物.
Abstract:
To develop drought-resistant plants or crops, we constructed the PSARK::XERICO plant expression vector and transformed it into the model plant Arabidopsis thaliana (Col-0 ecotype) to analyze the physiological phenotypes. In this study, SARK promoter was isolated from recombinant plasmid of pSARK-IPT; full length of XERICO gene was amplified from the cDNA of Arabidopsis seedlings by the RT-PCR technique; the SARK promoter and the XERICO gene replaced CaMV 35S promoter and GUS gene respectively to obtain the recombinant plasmid, designated as pBI121-pSARK-XERICO. The constructed expression vector was transformed into the wild-type Arabidopsis through the floral dip method. The homozygous lines were obtained through selection of antibiotic resistance and analysis of genetic segregation. The obtained homozygous seedlings were assayed by PCR and evaluated through abscisic acid (ABA) sensitivity analysis during seed germination, and analyzed through the results of phenotypic observation after salinity and mannitol stress treatment during early seedling growth. In addition, the analysis of drought tolerance was conducted between the transgenic PSARK::XERICO and wild-type Arabidopsis. Compared with the wild-type and xerico mutant plants, the transgenic PSARK::XERICO plants were more sensitive to 1.0 μmol/L ABA, 100 mmol/L NaCl and 200 mmol/L mannitol. The expression of water deficit-inducible XERICO gene in Arabidopsis enhanced the tolerance to drought stress. Therefore, this study indicated that PSARK::XERICO has the potential for breeding drought-tolerant plants or crops.

参考文献/References:

1 Mittler R, Blumwald E. Genetic engineering for modern agriculture: challenges and perspectives [J]. Annu Rev Plant Biol, 2010, 61: 443-462 2 Pasapula V, Shen GX, Kuppu S, Paez-Valencia J, Mendoza M, Hou P, Chen J, Qiu XY, Zhu LF, Zhang XL, Auld D, Blumwald E, Zhang H, Gaxiola R, Payton P. Expression of an Arabidopsis vacuolar H+-pyrophosphatase gene (AVP1) in cotton improves drought- and salt tolerance and increases fibre yield in the field conditions [J]. Plant Biotech J, 2011, 9: 88-99 3 杨帆, 苗灵凤, 胥晓, 李春阳. 植物对干旱胁迫的响应研究进展[J]. 应用与环境生物学报, 2007, 13 (4): 586-591 [Yang F, Miao LF, Xu X, Li CY. Progress in research of plant responses to drought stress [J]. Chin J Appl Environ Biol, 2007, 13 (4): 586-591] 4 宁约瑟, 王国梁, 谢旗. 泛素连接酶E3介导的植物干旱胁迫反应[J]. 植物学报, 2011, 46 (6): 606-616 [Ning YS, Wang GL, Xie Q. E3 Ubiquitin ligase-mediated drought responses in plants [J]. Chin Bull Bot, 2011, 46 (6): 606-616] 5 Peleg Z, Blumwald E. Hormone balance and abiotic stress tolerance in crop plants [J]. Curr Opin Plant Biol, 2011, 14 (3): 290-295 6 Boyer JS. Plant productivity and environment [J]. Science, 1982, 218 (4571): 443-448 7 Peleg Z, Apse MP, Blumwald E. Engineering salinity and water-stress tolerance in crop plants: getting closer to the field [J]. Adv Bot Res, 2011, 57: 405-443 8 Rivero RM, Kojima M, Gepstein A, Sakakibara H, Mittler R, Gepstein S, Blumwald E. Delayed leaf senescence induces extreme drought tolerance in a flowering plant [J]. Proc Natl Acad Sci USA, 2007, 104 (49): 19631-19636 9 Rivero RM, Shulaev V, Blumwald E. Cytokinin-dependent photorespiration and the protection of photosynthesis during water deficit [J]. Plant Physiol, 2009, 150 (3): 1530-1540 10 Rivero RM, Gimeno J, Van Deynze A, Walia H, Blumwald E. Enhanced cytokinin synthesis in tobacco plants expressing PSARK::IPT prevents the degradation of photosynthetic protein complexes during drought [J]. Plant Cell Physiol, 2010, 51 (11): 1929-1941 11 Peleg Z, Reguera M, Tumimbang E, Walia H, Blumwald E. Cytokinin mediated source/sink modifications improve drought tolerance and increases grain yield in rice under water stress [J]. Plant Biotech J, 2011, 9 (7): 747-758 12 Qin H, Gu Q, Zhang J, Sun L, Kuppu S, Zhang Y, Burow M, Payton P, Blumwald E, Zhang H. Regulated expression of an isopentenyltransferase gene (IPT) in peanut significantly improves drought tolerance and increases yield under field conditions [J]. Plant Cell Physiol, 2011, 52 (11): 1904-1914 13 Kuppu S, Mishra N, Hu R, Sun L, Zhu X, Shen G, Blumwald E, Payton P, Zhang H. Water-deficit inducible expression of a cytokinin biosynthetic gene IPT improves drought tolerance in cotton [J]. PLoS ONE, 2013, 8 (5): e64190 14 Ko J, Yang SH, Han K. Upregulation of an Arabidopsis RING-H2 gene, XERICO, confers drought tolerance through increased abscisic acid biosynthesis [J]. Plant J, 2006, 47 (3): 343-355 15 Zentella R, Zhang Z, Park M, Thomas SG, Endo A, Murase K, Fleet CM, Jikumaru Y, Nambara E, Kamiya Y, Sun T. Global analysis of DELLA direct targets in early gibberellin signaling in Arabidopsis [J]. Plant Cell, 2007, 19 (10): 3037-3057 16 Murashige T, Skoog F. A revised medium for rapid growth and bioassays with tobacco tissue cultures [J]. Physiol Plant, 1962, 15 (3): 473-497 17 Clough SJ, Bent AF. Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana [J]. Plant J, 1998, 16 (6): 735-743 18 Delatorrea CA, Cohena Y, Liu L, Pelega Z, Blumwald E. The regulation of the SARK promoter activity by hormones and environmental signals [J]. Plant Sci, 2012, 193-194: 39-47 19 Eckardt NA. GA signaling: direct targets of DELLA proteins [J]. Plant Cell, 2007, 19 (10): 2970

相似文献/References:

[1]赵昕,盛芬玲,赵敏桂,等.NaCl胁迫下盐芥和拟南芥化合物含量与蛋白质结构变化比较——傅立叶红外光谱法[J].应用与环境生物学报,2008,14(03):371.
 ZHAO Xin,et al..Effects of Salt Stress on Chemical Composition and Protein Conformation Changes in Thellungiella and Arabidopsis Seedlings[J].Chinese Journal of Applied & Environmental Biology,2008,14(06):371.
[2]王爱萍,景蕊莲,杨武德,等.小麦TaMyb2基因转化拟南芥表达载体的构建与遗传转化[J].应用与环境生物学报,2008,14(06):750.[doi:10.3724/SP.J.1145.2008.00750]
 WANG Aiping,JING Ruilian**,et al.Construction and Genetic Transformation of Arabidopsis thaliana Expression Vector of Wheat TaMyb2[J].Chinese Journal of Applied & Environmental Biology,2008,14(06):750.[doi:10.3724/SP.J.1145.2008.00750]
[3]李利红,仪慧兰,武冬梅.二氧化硫胁迫诱发拟南芥植株含硫抗氧化物水平提高[J].应用与环境生物学报,2010,16(05):613.[doi:10.3724/SP.J.1145.2010.00613]
 LI Lihong,YI Huilan,WU Dongmei.Enhancement of Sulfur-containing Antioxidants in Arabidopsis Response to Sulfur Dioxide Fumigation[J].Chinese Journal of Applied & Environmental Biology,2010,16(06):613.[doi:10.3724/SP.J.1145.2010.00613]
[4]程涛,杨建明,刘辉,等.拟南芥硫酯酶基因(atfata)在大肠杆菌中的表达及其对游离脂肪酸合成的影响[J].应用与环境生物学报,2011,17(04):568.[doi:10.3724/SP.J.1145.2011.00568]
 CHENG Tao,YANG Jianming,LIU Hui,et al.Expression of Arabidopsis thaliana Thioesterase Gene (atfata) in Escherichia coli and Its Influence on Biosynthesis of Free Fatty Acid[J].Chinese Journal of Applied & Environmental Biology,2011,17(06):568.[doi:10.3724/SP.J.1145.2011.00568]
[5]马磊,张翔,田永强,等.拟南芥基因组中注释为异胡豆苷合成酶的基因克隆及异源表达[J].应用与环境生物学报,2013,19(02):224.[doi:10.3724/SP.J.1145.2013.00224]
 MA Lei,ZHANG Xiang,TIAN Yongqiang,et al.Molecular Cloning and Heterologous Expression of Putative Strictosidine Synthases from Arabidopsis thaliana[J].Chinese Journal of Applied & Environmental Biology,2013,19(06):224.[doi:10.3724/SP.J.1145.2013.00224]
[6]陈杰,许长征,曹颖倩,等.不同重金属对拟南芥根系特征的影响比较[J].应用与环境生物学报,2017,23(06):1122.[doi:10.3724/SP.J.1145.2017.03003]
 CHEN Jie,XU Changzheng,CAO Yingqian,et al.Heavy-metal-induced morphological changes of root characteristics in Arabidopsis thaliana[J].Chinese Journal of Applied & Environmental Biology,2017,23(06):1122.[doi:10.3724/SP.J.1145.2017.03003]
[7]常斐斐,曹曦跃,彭婕,等.褪黑素诱导拟南芥抗芸薹根肿菌[J].应用与环境生物学报,2018,24(01):75.[doi:10.19675/j.cnki.1006-687x.2017.03033]
 CHANG Feifei,CAO Xiyue,PENG Jie,et al.Induced resistance to $Plasmodiophora brassicae$ in $Arabidopsis$ by melatonin*[J].Chinese Journal of Applied & Environmental Biology,2018,24(06):75.[doi:10.19675/j.cnki.1006-687x.2017.03033]
[8]邹婷,刘唤唤,刘永胜,等.拟南芥新基因SI(stress insensitive)参与非生物胁迫应答[J].应用与环境生物学报,2018,24(02):328.[doi:10.19675/j.cnki.1006-687x.2017.05043]
 ZOU Ting,LIU Huanhuan,LIU Yongsheng,et al.A novel gene SI (stress insensitive) is involved in the response to abiotic stress in Arabidopsis[J].Chinese Journal of Applied & Environmental Biology,2018,24(06):328.[doi:10.19675/j.cnki.1006-687x.2017.05043]

备注/Memo

备注/Memo:
国家留学基金委项目(2007U24013)资助
更新日期/Last Update: 2014-01-03