|本期目录/Table of Contents|

[1]苗雁文,李嵘,熊方杰,等.水稻转录因子OsMYB14干涉载体构建、遗传转化与功能分析[J].应用与环境生物学报,2013,19(06):960-968.[doi:10.3724/SP.J.1145.2013.00960]
 MIAO Yanwen,LI Rong,XIONG Fangjie,et al.RNA Interference Vector Construction, Genetic Transformation and Function Analysis of Rice Transcription Factor OsMYB14[J].Chinese Journal of Applied & Environmental Biology,2013,19(06):960-968.[doi:10.3724/SP.J.1145.2013.00960]
点击复制

水稻转录因子OsMYB14干涉载体构建、遗传转化与功能分析()
分享到:

《应用与环境生物学报》[ISSN:1006-687X/CN:51-1482/Q]

卷:
19卷
期数:
2013年06期
页码:
960-968
栏目:
研究论文
出版日期:
2013-12-25

文章信息/Info

Title:
RNA Interference Vector Construction, Genetic Transformation and Function Analysis of Rice Transcription Factor OsMYB14
作者:
苗雁文李嵘熊方杰曾正明牛向丽刘永胜
(1重庆大学生命科学学院 重庆 400000) (2合肥工业大学生物与食品工程学院 合肥 230009)
Author(s):
MIAO Yanwen LI Rong XIONG Fangjie ZENG Zhengming NIU Xiangli LIU Yongsheng
(1School of Life Sciences, Chongqing University, Chongqing 400000, China) (2School of Biotechnology and Food Engineering, Hefei University of Technology, Hefei 230009, China)
关键词:
水稻MYB转录因子RNAi干涉非生物胁迫分蘖
Keywords:
Oryza sativa L. MYB transcription factor RNA interference abiotic stress tiller
分类号:
Q943.2 : S511.034
DOI:
10.3724/SP.J.1145.2013.00960
文献标志码:
A
摘要:
MYB转录因子在植物生长发育和抗逆反应中发挥着重要的调节作用. 分离了一个水稻R2R3-MYB基因OsMYB14,在盐、干旱和280-320 nm紫外线(UV-B)等非生物胁迫下,该基因表达量下调. 利用RNA干涉技术构建OsMYB14的RNAi干涉载体,通过农杆菌介导法转入野生型水稻品种日本晴,遗传转化获得转基因植株. Real-time PCR结果显示,转基因株系中OsMYB14基因的表达量显著降低. 田间表型分析显示,与野生型日本晴相比,转基因株系的有效穗数和分蘖数明显增多. 正常条件下,转基因株系和野生型株系幼苗的生长发育情况没有明显区别,但是转基因株系幼苗对盐、干旱和UV-B的耐受性显著增强,且对脱落酸(ABA)的敏感程度降低. 这些结果说明,OsMYB14编码一个ABA依赖的,参与水稻生长发育和抗逆反应的MYB转录因子,在盐、干旱和UV-B等非生物胁迫的反应中起着调节作用.
Abstract:
MYB (myeloblastosis) transcription factors play vital roles in the regulation of plant development and defense responses. This study isolated a rice R2R3-MYB, OsMYB14, the expression of which was down-regulated by abiotic stress, such as salt, drought and UV-B (ultraviolet-B, 280-320 nm). RNA interference (RNAi) vector of OsMYB14 was constructed and introduced into rice cultivar Nipponbare by Agrobacterium-mediated transformation. Real-time PCR revealed a significant decrease of OsMYB14 expression level in transgenic lines. Compared with wild-type plants, the transgenic plants exhibited more spikes and tillers. No difference in growth and development between the transgenic lines and wild-type plants was observed under normal conditions, but the transgenic seedlings were more tolerant to salt, drought and UV-B, yet less sensitive to abscisic acid (ABA) than wild-type plants. These results suggested that OsMYB14 encodes an ABA-dependent, growth-regulatory and stress-responsive MYB transcription factor that plays an important role in tolerance of rice to salt, drought and UV-B.

参考文献/References:

1 Munns R, Tester M. Mechanisms of salinity tolerance [J]. Annu Rev Plant Biol, 2008, 59: 651-681 2 Zhu JK. Salt and drought stress signal transduction in plants [J]. Annu Rev Plant Biol, 2002, 53: 247-273 3 Xin Z, Browse J. Eskimo1 mutants of Arabidopsis are constitutively freezing-tolerant [J]. Proc Natl Acad Sci USA, 1998, 95 (13): 7799-7804 4 Mitsuda N, Ohme-Takagi M. Functional analysis of transcription factors in Arabidopsis [J]. Plant Cell Physiol, 2009, 50(7): 1232-1248 5 Takasaki H, Maruyama K, Kidokoro S, Ito Y, Fujita Y, Shinozaki K, Yamaguchi-Shinozaki K, Nakashima K, The abiotic stress-responsive NAC-type transcription factor OsNAC5 regulates stress-inducible genes and stress tolerance in rice [J]. Mol Genet Genomics, 2010, 284 (3): 173-183 6 Xiang Y, Tang N, Du H, Ye H, Xiong L. Characterization of OsbZIP23 as a key player of the basic leucine zipper transcription factor family for conferring abscisic acid sensitivity and salinity and drought tolerance in rice [J]. Plant Physiol, 2008, 148 (4): 1938-1952 7 Yang A, Dai X, Zhang WH. A R2R3-type MYB gene, OsMYB2, is involved in salt, cold, and dehydration tolerance in rice [J]. J Exp Bot, 2012, 63 (7): 2541-2556 8 Klempnauer KH, Gonda TJ, Bishop JM. Nucleotide sequence of the retroviral leukemia gene v-myb and its cellular progenitor c-myb: the architecture of a transduced oncogene [J]. Cell, 1982. 31 (2 Pt 1): 453-463 9 Paz-Ares J, Ghosal D, Wienand U, Peterson PA, Saedler H. The regulatory c1 locus of Zea mays encodes a protein with homology to myb proto-oncogene products and with structural similarities to transcriptional activators [J]. EMBO J, 1987, 6 (12): 3553-3558 10 Ogata K, Hojo H, Aimoto S, Nakai T, Nakamura H, Sarai A, Ishii S, Nishimura Y. Solution structure of a DNA-binding unit of Myb: a helix-turn-helix-related motif with conserved tryptophans forming a hydrophobic core [J]. Proc Natl Acad Sci USA, 1992, 89 (14): 6428-6432 11 Stracke R, Werber M, Weisshaar B. The R2R3-MYB gene family in Arabidopsis thaliana [J]. Curr Opin Plant Biol, 2001, 4 (5): 447-456 12 Chen Y, Yang X, He K, Liu M, Li J, Gao Z, Lin Z, Zhang Y, Wang X, Qiu X, Shen Y, Zhang L, Deng X, Luo J, Deng XW, Chen Z, Gu H, Qu L The MYB transcription factor superfamily of Arabidopsis: expression analysis and phylogenetic comparison with the rice MYB family [J]. Plant Mol Biol, 2006, 60 (1): 107-124 13 Mahjoub A, Hernould M, Joubes J, Decendit A, Mars M, Barrieu F, Hamdi S, Delrot S. Overexpression of a grapevine R2R3-MYB factor in tomato affects vegetative development, flower morphology and flavonoid and terpenoid metabolism [J]. Plant Physiol Biochem, 2009, 47 (7): 551-561 14 Stracke R, Ishihara H, Huep G, Barsch A, Mehrtens F, Niehaus K, Weisshaar B. Differential regulation of closely related R2R3-MYB transcription factors controls flavonol accumulation in different parts of the Arabidopsis thaliana seedling [J]. Plant J, 2007, 50 (4): 660-677 15 Yamagishi M, Shimoyamada Y, Nakatsuka T, Masuda K. Two R2R3-MYB genes, homologs of Petunia AN2, regulate anthocyanin biosyntheses in flower tepals, tepal spots and leaves of asiatic hybrid lily [J]. Plant Cell Physiol, 2010, 51 (3): 463-474 16 Higginson T, Li SF, Parish RW. AtMYB103 regulates tapetum and trichome development in Arabidopsis thaliana [J]. Plant J, 2003, 35 (2): 177-192 17 Baudry A, Heim MA, Dubreucq B, Caboche M, Weisshaar B, Lepiniec L. TT2, TT8, and TTG1 synergistically specify the expression of BANYULS and proanthocyanidin biosynthesis in Arabidopsis thaliana [J]. Plant J, 2004, 39 (3): 366-380 18 Shin B, Choi G, Yi H, Yang S, Cho I, Kim J, Lee S, Paek NC, Kim JH, Song PS, Choi G. AtMYB21, a gene encoding a flower-specific transcription factor, is regulated by COP1 [J]. Plant J, 2002, 30 (1): 23-32 19 Penfield S, Meissner RC, Shoue DA, Carpita NC, Bevan MW. MYB61 is required for mucilage deposition and extrusion in the Arabidopsis seed coat [J]. Plant Cell, 2001, 13 (12): 2777-2791 20 Araki S, Ito M, Soyano T, Nishihama R, Machida Y. Mitotic cyclins stimulate the activity of c-Myb-like factors for transactivation of G2/M phase-specific genes in tobacco [J]. J Biol Chem, 2004, 279 (31): 32979-32988 21 Shan H, Chen S, Jiang J, Chen F, Chen Y, Gu C, Li P, Song A, Zhu X, Gao H, Zhou G, Li T, Yang X. Heterologous expression of the chrysanthemum R2R3-MYB transcription factor CmMYB2 enhances drought and salinity tolerance, increases hypersensitivity to ABA and delays flowering in Arabidopsis thaliana [J]. Mol Biotechnol, 2012, 51 (2): 160-173 22 El-Kereamy A, Bi YM, Ranathunge K, Beatty PH, Good AG, Rothstein SJ. The rice R2R3-MYB transcription factor OsMYB55 is involved in the tolerance to high temperature and modulates amino acid metabolism [J]. PLoS One, 2012, 7 (12): e52030 23 Pasquali G, Biricolti S, Locatelli F, Baldoni E, Mattana M. Osmyb4 expression improves adaptive responses to drought and cold stress in transgenic apples [J]. Plant Cell Rep, 2008, 27 (10): 1677-1686 24 Denekamp M, Smeekens SC. Integration of wounding and osmotic stress signals determines the expression of the AtMYB102 transcription factor gene [J]. Plant Physiol, 2003, 132 (3): 1415-1423 25 Newman LJ, Perazza DE, Juda L, Campbell MM. Involvement of the R2R3-MYB, AtMYB61, in the ectopic lignification and dark-photomorphogenic components of the det3 mutant phenotype [J]. Plant J, 2004, 37 (2): 239-250 26 Gocal GF, Sheldon CC, Gubler F, Moritz T, Bagnall DJ, MacMillan CP, Li SF, Parish RW, Dennis ES, Weigel D, King RW. GAMYB-like genes, flowering, and gibberellin signaling in Arabidopsis [J]. Plant Physiol, 2001, 127 (4): 1682-1693 27 Park MR, Yun KY, Mohanty B, Herath V, Xu F, Wijaya E, Bajic VB, Yun SJ, De Los Reyes BG. Supra-optimal expression of the cold-regulated OsMyb4 transcription factor in transgenic rice changes the complexity of transcriptional network with major effects on stress tolerance and panicle development [J]. Plant Cell Environ, 2010, 33 (12): 2209-2230 28 Soltesz A, Vagujfalvi A, Rizza F, Kerepesi I, Galiba G, Cattivelli L, Coraggio I, Crosatti C. The rice Osmyb4 gene enhances tolerance to frost and improves germination under unfavourable conditions in transgenic barley plants [J]. J Appl Genet, 2012, 53 (2): 133-143 29 Ma Q, Dai X, Xu Y, Guo J, Liu Y, Chen N, Xiao J, Zhang D, Xu Z, Zhang X, Chong K. Enhanced tolerance to chilling stress in OsMYB3R-2 transgenic rice is mediated by alteration in cell cycle and ectopic expression of stress genes [J]. Plant Physiol, 2009, 150 (1): 244-256 30 Su CF, Wang YC, Hsieh TH, Lu CA, Tseng TH, Yu SM. A novel MYBS3-dependent pathway confers cold tolerance in rice [J]. Plant Physiol, 2010, 153 (1): 145-158 31 Dai X, Wang Y, Yang A, Zhang WH. OsMYB2P-1, an R2R3 MYB transcription factor, is involved in the regulation of phosphate-starvation responses and root architecture in rice [J]. Plant Physiol, 2012, 159 (1): 169-183 32 Vannini C, Locatelli F, Bracale M, Magnani E, Marsoni M, Osnato M, Mattana M, Baldoni E, Coraggio I. Overexpression of the rice Osmyb4 gene increases chilling and freezing tolerance of Arabidopsis thaliana plants [J]. Plant J, 2004, 37 (1): 115-127 33 Yang S, Sweetman JP, Amirsadeghi S, Barghchi M, Huttly AK, Chung WI, Twell D. Novel anther-specific myb genes from tobacco as putative regulators of phenylalanine ammonia-lyase expression [J]. Plant Physiol, 2001, 126 (4): 1738-1753 34 Chong J, Baltz R, Schmitt C, Beffa R, Fritig B, Saindrenan P. Downregulation of a pathogen-responsive tobacco UDP-Glc:phenylpropanoid glucosyltransferase reduces scopoletin glucoside accumulation, enhances oxidative stress, and weakens virus resistance [J]. Plant Cell, 2002, 14 (5): 1093-1107 35 Jin H, Cominelli E, Bailey P, Parr A, Mehrtens F, Jones J, Tonelli C, Weisshaar B, Martin C. Transcriptional repression by AtMYB4 controls production of UV-protecting sunscreens in Arabidopsis [J]. EMBO J, 2000, 19 (22): 6150-6161 36 Szekely G, Abraham E, Cseplo A, Rigo G, Zsigmond L, Csiszar J, Ayaydin F, Strizhov N, Jasik J, Schmelzer E, Koncz C, Szabados L. Duplicated P5CS genes of Arabidopsis play distinct roles in stress regulation and developmental control of proline biosynthesis [J]. Plant J, 2008, 53 (1): 11-28 37 Cominelli E, Galbiati M, Vavasseur A, Conti L, Sala T, Vuylsteke M, Leonhardt N, Dellaporta SL, Tonelli C. A guard-cell-specific MYB transcription factor regulates stomatal movements and plant drought tolerance [J]. Curr Biol, 2005, 15 (13): 1196-1200 38 Guo Y, Gan S. AtMYB2 regulates whole plant senescence by inhibiting cytokinin-mediated branching at late stages of development in Arabidopsis [J]. Plant Physiol, 2011, 156 (3): 1612-1619 39 Schmitz G, Tillmann E, Carriero F, Fiore C, Cellini F, Theres K. The tomato blind gene encodes a MYB transcription factor that controls the formation of lateral meristems [J]. Proc Natl Acad Sci USA, 2002, 99 (2): 1064-1069 40 Muller D, Schmitz G, Theres K. Blind homologous R2R3 Myb genes control the pattern of lateral meristem initiation in Arabidopsis [J]. Plant Cell, 2006, 18 (3): 586-597

相似文献/References:

[1]闵航,陈美慈,钱泽澍.水田中水稻、稗草和异型莎草甲烷排放的生物学特性[J].应用与环境生物学报,1995,1(02):114.
 Min Hang,Chen Meici,Qian Zheshu.BIOLOGICAL CHARACTERISTICS OF METHANE EMISSION THROUGH ORYZA SATIVA,PANICUM CRUS-GALLI AND CYPERUS DIFFORMIS GROWING IN PADDY SOIL[J].Chinese Journal of Applied & Environmental Biology,1995,1(06):114.
[2]吴照辉,贺立源,严昶,等.低磷胁迫对水稻地上部钙、镁吸收和积累的影响[J].应用与环境生物学报,2009,15(03):295.[doi:10.3724/SP.J.1145.2009.00295]
 WU Zhaohui,HE Liyuan,YAN Chang,et al.Effect of Low Phosphorus Stress on Calcium and Magnesium Absorption and Accumulation in Rice Shoot[J].Chinese Journal of Applied & Environmental Biology,2009,15(06):295.[doi:10.3724/SP.J.1145.2009.00295]
[3]郭再华,孟萌,侯彦琳.磷、砷双重胁迫对不同耐低磷水稻苗期生长及磷、砷吸收的影响[J].应用与环境生物学报,2009,15(05):596.[doi:10.3724/SP.J.1145.2009.00596]
 GUO Zaihua,MENG Meng & HOU Yanlin.Effect of P and As Couple Stress on Growth, and P and As Absorption of Different P-tolerant Rice Seedlings[J].Chinese Journal of Applied & Environmental Biology,2009,15(06):596.[doi:10.3724/SP.J.1145.2009.00596]
[4]王志春,杨福,齐春艳.盐碱胁迫对水稻花粉扫描特征和生活力的影响[J].应用与环境生物学报,2010,16(01):63.[doi:10.3724/SP.J.1145.2010.00063]
 WANG Zhichun,YANG Fu,QI Chunyan.Effects of Salinity and Sodicity Stresses on Pollen Surface Characteristics and Viability of Rice[J].Chinese Journal of Applied & Environmental Biology,2010,16(06):63.[doi:10.3724/SP.J.1145.2010.00063]
[5]吴照辉,贺立源,严昶,等.低磷胁迫对水稻铁、锰吸收和积累的影响[J].应用与环境生物学报,2010,16(02):185.[doi:10.3724/SP.J.1145.2010.00185]
 WU Zhaohui,HE Liyuan,YAN Chang,et al.Effect of Low Phosphorus Stress on Fe and Mn Absorption and Accumulation by Rice Shoots[J].Chinese Journal of Applied & Environmental Biology,2010,16(06):185.[doi:10.3724/SP.J.1145.2010.00185]
[6]于敏,王文国,王胜华,等.外源柠檬酸对水稻铜毒害的缓解效应[J].应用与环境生物学报,2010,16(05):617.[doi:10.3724/SP.J.1145.2010.00617]
 YU Min,WANG Wenguo,WANG Shenghua,et al.Alleviative Effect of Exogenous Citric Acid on Rice under Copper Toxicity[J].Chinese Journal of Applied & Environmental Biology,2010,16(06):617.[doi:10.3724/SP.J.1145.2010.00617]
[7]罗晓莉,牛向丽,黄维藻,等.水稻DDB1基因的表达特性及功能分析[J].应用与环境生物学报,2011,17(01):1.[doi:10.3724/SP.J.1145.2011.00001]
 LUO Xiaoli,NIU Xiangli,HUANG Weizao,et al.Expression Characteristics and Functional Analysis of Rice DDB1 Gene[J].Chinese Journal of Applied & Environmental Biology,2011,17(06):1.[doi:10.3724/SP.J.1145.2011.00001]
[8]应兴华,欧阳由男,徐霞,等.三唑磷降解对水稻叶绿素含量的影响[J].应用与环境生物学报,2011,17(02):211.[doi:10.3724/SP.J.1145.2011.00211]
 YING Xinghua,OUYANG Younan,XU Xia,et al.Effect of Triazophos Degradation on Chlorophyll Content in Rice (Oryza sativa L.) and Their Correlation Study[J].Chinese Journal of Applied & Environmental Biology,2011,17(06):211.[doi:10.3724/SP.J.1145.2011.00211]
[9]刘红江,陈留根,朱普平,等.农田施用水葫芦对水稻干物质生产与分配的影响[J].应用与环境生物学报,2011,17(04):521.[doi:10.3724/SP.J.1145.2011.00521]
 LIU Hongjiang,CHEN Liugen,ZHU Puping,et al.Effects of Hyacinth Mulching on Dry Matter Production and Distribution of Rice (Oryza sativa L.)[J].Chinese Journal of Applied & Environmental Biology,2011,17(06):521.[doi:10.3724/SP.J.1145.2011.00521]
[10]盛婧,刘红江,陈留根,等.农田施用水葫芦对水稻磷素吸收利用的影响[J].应用与环境生物学报,2011,17(06):803.[doi:10.3724/SP.J.1145.2011.00803]
 SHENG Jing,LIU Hongjiang,CHEN Liugen,et al.Effect of Hyacinth Mulching on Uptake and Utilization of Phosphorus by Rice Plant (Oryza sativa L.)[J].Chinese Journal of Applied & Environmental Biology,2011,17(06):803.[doi:10.3724/SP.J.1145.2011.00803]

备注/Memo

备注/Memo:
重庆市科技攻关项目(2010AA1019)资助
更新日期/Last Update: 2014-01-03