|本期目录/Table of Contents|

[1]柯德森,杨礼香,巫锦雄.光强对玉米幼苗光合特性及环境羟基自由基水平的影响[J].应用与环境生物学报,2013,19(03):404-409.[doi:10.3724/SP.J.1145.2013.00404]
 KE Desen,YANG Lixiang,WU Jinxiong.Effects of Light Intensity on the Photosynthetic Characteristics of Maize Seedlings and the Content of Atmosphere Hydroxyl Radical[J].Chinese Journal of Applied & Environmental Biology,2013,19(03):404-409.[doi:10.3724/SP.J.1145.2013.00404]
点击复制

光强对玉米幼苗光合特性及环境羟基自由基水平的影响()
分享到:

《应用与环境生物学报》[ISSN:1006-687X/CN:51-1482/Q]

卷:
19卷
期数:
2013年03期
页码:
404-409
栏目:
研究论文
出版日期:
2013-06-25

文章信息/Info

Title:
Effects of Light Intensity on the Photosynthetic Characteristics of Maize Seedlings and the Content of Atmosphere Hydroxyl Radical
作者:
柯德森杨礼香巫锦雄
(广州大学生命科学学院,植物抗逆基因功能研究广州市重点实验室 广州 510006)
Author(s):
KE DesenYANG LixiangWU Jinxiong
(Guangzhou Key Laboratory for Functional Study on Plant Stress-Resistant Gene, School of Life Sciences, Guangzhou University, Guangzhou 510006, China)
关键词:
玉米幼苗光照强度光抑制大气环境羟基自由基光合特性
Keywords:
maize seedling light intensity photoinhibition atmosphere hydroxyl radical photosynthetic characteristic
分类号:
X511 : S513.01
DOI:
10.3724/SP.J.1145.2013.00404
摘要:
在条件可控的密闭培养室中培养玉米幼苗,改变温度、光强及水分等培养条件,动态测量玉米幼苗的光合作用指标以及培养室环境空气中的羟基自由基(?OH)水平. 结果显示:在较低光照强度下,玉米幼苗叶片净光合速率(Pn)、最大光化学量子产量(Fv/Fm)、PSⅡ实际光化学量子产量(ΦPSⅡ)、光化学淬灭系数(qP)均随着光强的上升而上升. 当光强增大到某一程度时,Pn、Fv/Fm、ΦPSⅡ及qP开始下降,显示高光强下玉米幼苗出现了一定程度的光抑制. 无论正常生长条件或低温及渗透胁迫环境下,玉米幼苗生长的培养室空气中?OH水平均明显高于没有植物生长的对照培养室. 光照强度没有达到引起光抑制出现的程度时,培养室环境中的?OH水平随光强的变化不明显;当光强上升到引起玉米幼苗出现光抑制时,环境?OH水平明显上升,并且随着光抑制程度的增加而升高. 相关性分析表明,较低光照下环境?OH水平与玉米幼苗各项光合作用指标没有明显的相关性,但在光抑制情况下,环境?OH水平与光抑制程度密切相关,并与非光化学淬灭系数qN值呈明显正相关. 研究结果为证明植物生长对环境?OH水平的影响提供了依据,同时表明处于光抑制状态比正常光合状态的玉米幼苗对环境中?OH水平的影响更加明显.
Abstract:
The maize seedlings were grown in closed incubators in which light intensity, temperature, and osmotic pressure could be controlled. The photosynthesis indexes of maize seedlings, as well as the content of ambient hydroxyl radical (?OH) in the closed incubator were dynamically measured and monitored. The results showed that at lower light intensity, the net photosynthetic rate (Pn), the maximal photochemical quantum yield (Fv/Fm), PSⅡ actual photochemical quantum yield (ΦPSⅡ), and the photochemical quenching coefficient (qP) increased with the light intensity. When light intensity was increased to a certain extent, Pn, Fv/Fm, ΦPSⅡ and qP began to decline, showing a certain degree of photoinhibition in maize seedlings under high light intensity. Whether in normal condition, or with chilling stress, or osmotic stress, the content of ambient ?OH in the maize seedling culture room was significantly higher than the control room with no plant. The level of ambient ?OH in the culture room did not obviously change with light intensity below the level that could cause photoinhibition. However, when the light intensity rose to a level that could cause the photoinhibition in maize seedlings, ambient ?OH levels were significantly increased with the photoinhibition degree. Correlation analysis showed there was no significant correlation between the ?OH level and the photosynthesis index of maize seedlings under lower light intensity. However, in the case of photoinhibition, ambient ?OH levels were closely related to photoinhibition degree. In addition, the ambient ?OH was shown to be significantly related with the non-photochemical quenching coefficient (qN). Our research results proved the influence of plants on the ambient ?OH level, and showed that maize seedlings under photoinhibition had more pronounced impact on the ambient ?OH level than in normal photosynthetic state.

参考文献/References:

刘冬莲, 黄艳斌. ?OH的形成机理及在水处理中的应用[J]. 环境科学与技术, 2003, 26 (1): 44-46 [Liu DL, Huang YB. ?OH formation mechanism and its application in water treatment [J]. Environ Sci Technol, 2003, 26 (1): 44-46]
Wang H, Suna DZ, Bian ZY. Degradation mechanism of diethyl phthalate with electrogenerated hydroxyl radical on a Pd/C gas-diffusion electrode [J]. J Hazard Mater, 2010, 180: 710-715
Han SK, Hwang TM, Yoon Y, Kang JW. Evidence of singlet oxygen and hydroxyl radical formation in aqueous goethite suspension using spin-trapping electron paramagnetic resonance (EPR) [J]. Chemosphere, 2011, 84: 1095-1101
Wang YN, Chen JW, Li XH, Wang B, Cai XY, Huang LP. Predicting rate constants of hydroxyl radical reactions with organic pollutants: algorithm, validation, applicability domain, and mechanistic interpretation [J]. Atmos Environ, 2009, 43: 1131-1135
Liu B, Wang HX. Determination of atmospheric hydroxyl radical by HPLC coupled with electrochemical detection [J]. J Environ Sci, 2008, 20: 28-32
Herrmann F, Winterhalter R, Moortgat GK, Williams J. Hydroxyl radical (?OH) yields from the ozonolysis of both double bonds for five monoterpenes [J]. Atmos Environ, 2010, 44: 3458-3464
Prinn RG. Ozone, Hydroxyl Radical and Oxidative Capacity [M]. London: Elsevier, 2003. 1-19
François BP, Couvert A, Renner C, Levasseur JP. Intensification of volatile organic compounds mass transfer in a compact scrubber using the O3/H2O2 advanced oxidation process: kinetic study and hydroxyl radical tracking [J]. Chemosphere, 2011, 85: 1122-1129
Francea JL, Kinga MD, Lee-Taylor J. Hydroxyl radical (?OH) production rates in snowpacks from photolysis of hydrogen peroxide (H2O2) and nitrate (NO3) [J]. Atmos Environ, 2007, 41: 5502-5509
Maezono T, Tokumura M, Sekine M, Kawase Y. Hydroxyl radical concentration profile in photo-Fenton oxidation process: generation and consumption of hydroxyl radicals during the discoloration of azo-dye Orange II [J]. Chemosphere, 2011, 82: 1422-1430
Castagna R, Eiserich JP, Budamagunta MS, Stipa P, Cross CE, Proietti E, Voss JC, Greci L. Hydroxyl radical from the reaction between hypochlorite and hydrogen peroxide [J]. Atmos Environ, 2008, 42: 6551-6554
Valavanidis A, Loridas S, Vlahogianni T, Fiotakis K. Influence of ozone on traffic-related particulate matter on the generation of hydroxyl radicals through a heterogeneous synergistic effect [J]. J Hazard Mater, 2009, 162: 886-892
Li SX, Hong HS, Zheng FY, Deng NS. Effects of metal pollution and macronutrient enrichment on the photoproduction of hydroxyl radicals in seawater by the alga Dunaliella salina [J]. Mar Chem, 2008, 108: 207-214
Harrison D, Hunter MC, Lewis AC, Seakins PW, Bonsang B, Gros V, Kanakidou M, Touaty M, Kavouras I. Ambient isoprene and monoterpene concentrations in a Greek fir (Abies borisii-regis) forest [J]. Atmos Environ, 2001, 35: 4699-4711
Harrison D, Hunter MC, Lewis AC, Seakins PW, Nunes TV, Pio C. Isoprene and monoterpene emission from the coniferous species Abies borisii-regis implications for regional air chemistry [J]. Atmos Environ, 2001, 35: 4687-4698
Adams JM, Constable JVH, Guenther AB, Zimmerman P. An estimate of natural volatile organic compound emissions from vegetation since the last glacial maximum [J]. Chemosphere Global Change Sci, 2001, 3: 73-91
Genty B, Briantais JM, Baker NR. The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence [J]. Biochim Biophys Acta, 1989, 990: 87-91
Bektasoglu B, Özyürek M, Güclü K, Apak R. Hydroxyl radical detection with a salicylate probe using modified CUPRAC spectrophotometry and HPLC [J]. Talanta, 2008, 77: 90-97
任信荣, 邵可声, 缪国芳, 唐孝炎. 大气?OH自由基浓度的测定[J]. 中国环境科学, 2001, 21 (2): 115-118 [Ren XR, Shao KS, Miao GF, Tang XY. Determination of hydroxyl radical concentration in atmosphere [J]. China Environ Sci, 2001, 21 (2): 115-118]
Brestic M, Cornic G, Fryer M J, Baker NR. Does photorespiration protect the photosynthetic appraratus in French bean leaves from photoinhibition during drought stress [J]? Planta, 1995, 196: 450-457

相似文献/References:

[1]李有志,张灿明,谢永宏,等.三江平原小叶章和芦苇幼苗生长对低光胁迫的响应[J].应用与环境生物学报,2009,15(01):53.[doi:10.3724/SP.J.1145.2009.00053]
 LI Youzhi,ZHANG Canming,XIE Yonghong,et al.Growth Responses of Deyeuxia angustifolia and Phragmites communis Seedlings to Low-light Stress in the Sanjiang Plain*[J].Chinese Journal of Applied & Environmental Biology,2009,15(03):53.[doi:10.3724/SP.J.1145.2009.00053]
[2]匡双便,徐祥增,孟珍贵,等.不同透光率对三七生长特征及根皂苷含量的影响[J].应用与环境生物学报,2015,21(02):279.[doi:10.3724/SP.J.1145.2014.08002]
 KUANG Shuangbian,XU Xiangzeng,MENG Zhengui,et al.Effects of light transmittance on plant growth and root ginsenoside content of Panax notoginseng[J].Chinese Journal of Applied & Environmental Biology,2015,21(03):279.[doi:10.3724/SP.J.1145.2014.08002]
[3]孙莹,石锦安,邵小鹏,等.不同生境条件下光照强度对蓝花楹光合色素含量及开花的影响[J].应用与环境生物学报,2015,21(06):1150.[doi:10.3724/SP.J.1145.2015.07036]
 SUN Ying,SHI Jinan,SHAO Xiaopeng,et al.Effects of light intensity on photosynthetic pigment content and flowering of Jacaranda mimosifolia D. Don in different habitats[J].Chinese Journal of Applied & Environmental Biology,2015,21(03):1150.[doi:10.3724/SP.J.1145.2015.07036]
[4]付 忠 谢世清 徐文果 岩 所 陈军文*.3种光强环境下白魔芋生长旺盛期的光合和叶绿素a荧光特征[J].应用与环境生物学报,2016,22(03):446.[doi:10.3724/SP.J.1145.2015.10013]
 FU Zhong,XIE Shiqing,XU Wenguo,et al.Characteristics of photosynthesis and chlorophyll a fluorescence in Amorphophallus albus during vigorous growth under different light intensity*[J].Chinese Journal of Applied & Environmental Biology,2016,22(03):446.[doi:10.3724/SP.J.1145.2015.10013]
[5]梁俊林 张晓蓉 唐实玉 张健 徐振锋 谭波 刘洋**.光照强度对鸡爪槭叶色变化生理的影响[J].应用与环境生物学报,2020,26(03):1.[doi:10.19675/j.cnki.1006-687x.2019.08004]
 LIANG Junlin,ZHANG Xiaorong,TANG Shiyu,et al.Physiological effects of light intensity on leaf color change of Acer palmatum Thunb.[J].Chinese Journal of Applied & Environmental Biology,2020,26(03):1.[doi:10.19675/j.cnki.1006-687x.2019.08004]

备注/Memo

备注/Memo:
广东省自然科学基金项目(06021574,04300677)和广东省科技计划项目(2007B030701006,2008B030301245)资助
更新日期/Last Update: 2013-06-20