|本期目录/Table of Contents|

[1]涂毅,高秋强,鲍杰.外源功能基因在木质纤维素依赖型乳酸菌Pediococcus acidilactici DQ2中的表达[J].应用与环境生物学报,2013,19(05):811-816.[doi:10.3724/SP.J.1145.2013.00811]
 TU Yi,GAO Qiuqiang,BAO Jie.Expression of Functional Genes in Lignocellulose-dependent Lactic Acid Bacterium Pediococcus acidilactici DQ2[J].Chinese Journal of Applied & Environmental Biology,2013,19(05):811-816.[doi:10.3724/SP.J.1145.2013.00811]
点击复制

外源功能基因在木质纤维素依赖型乳酸菌Pediococcus acidilactici DQ2中的表达()
分享到:

《应用与环境生物学报》[ISSN:1006-687X/CN:51-1482/Q]

卷:
19卷
期数:
2013年05期
页码:
811-816
栏目:
研究论文
出版日期:
2013-10-25

文章信息/Info

Title:
Expression of Functional Genes in Lignocellulose-dependent Lactic Acid Bacterium Pediococcus acidilactici DQ2
作者:
涂毅高秋强 鲍杰
(华东理工大学生物反应器工程国家重点实验室 上海 200237)
Author(s):
TU YiGAO QiuqiangBAO Jie
(State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China)
关键词:
木质纤维素Pediococcus acidilactici DQ2表达系统启动子重组表达
Keywords:
lignocellulose Pediococcus acidilactici DQ2 expression system promoter recombinant expression
分类号:
Q936 : Q786
DOI:
10.3724/SP.J.1145.2013.00811
摘要:
乳酸片球菌Pediococcus acidilactici DQ2是一株耐高温和耐木质纤维素降解抑制物的乳酸高产菌株。为了在P. acidilactici DQ2中建立外源蛋白表达系统,对常用的乳酸菌表达载体pMG36e进行改造,将其启动子P32更换为来源于P. acidilactici DQ2的L-乳酸脱氢酶基因的启动子PldhL。并通过新载体pTY36e成功表达了两种不同的外源基因:来源于维多利亚多管发光水母(Aequorea victoria)的绿色荧光蛋白基因gfp和来源于多粘芽孢杆菌(Bacillus polymyxa 1.794)的β-葡萄糖苷酶基因bglA,其中所表达的胞内β-葡萄糖苷酶活力为4.48 U g-1(细胞干重)。此系统的成功构建为后续对该菌的基因工程改造奠定了基础。图4 表3 参25
Abstract:
Pediococcus acidilactici DQ2, isolated by our lab, is thermotolerant and highly resistant to the inhibitors derived from lignocellulose, and can produce high titer of lactic acid. To construct the expression system of this strain, we modified the lactic acid bacterial expression vector pMG36e by replacing the promoter P32 with PldhL derived from P. acidilactici DQ2. Two different heterologous genes were expressed successfully with the new plasmid pTY36e: green fluorescent protein gene (gfp) from Aequorea victoria and β-glucosidase gene (bglA) from Bacillus polymyxa 1.794. The results showed β-glucosidase enzyme activity of the recombinant bacteria as 4.48 U g-1 (dry cells) detected in the intracellular fraction. The successful construction of this system lays the foundation for subsequent genetically engineering of P. acidilactici DQ2. Fig 4, Tab 3, Ref 25

参考文献/References:

1 何明雄, 祝其丽, 潘科, 胡启春. 利用木质纤维素类生物质发酵生产乙醇重组菌株研究进展[J]. 应用与环境生物学报, 2009, 15 (4): 579-584 [He MX, Zhu QL, Pan K, Hu QC. Progress in ethanol production with lignocellulosic biomass by different recombinant strains [J]. Chin J Appl Environ Biol, 2009, 15 (4): 579-584] 2 Andri? P, Meyer AS, Jensen PA, Dam-Johansen K. Effect and modeling of glucose inhibition and in situ glucose removal during enzymatic hydrolysis of pretreated wheat straw [J]. Appl Biochem Biotechnol, 2010, 160: 280-297 3 Sun Y, Cheng J. Hydrolysis of lignocellulosic materials for ethanol production: a review [J]. Bioresour Technol, 2002, 83: 1-11 4 González-Candelas L, Aristoy MC, Polaina J, Flors A. Cloning and characterization of two genes from Bacillus polymyxa expressing beta-glucosidase activity in Escherichia coli [J]. Appl Environ Microbiol, 1989, 55: 3173-3177 5 赵云, 刘伟丰, 毛爱军, 江宁, 董志扬. 多粘芽孢杆菌(Bacillus polymyxa) β-葡萄糖苷酶基因在大肠杆菌中的表达、纯化及酶学性质分析[J]. 生物工程学报, 2004, 20: 741-844 [Zhao Y, Liu WF, Mao AJ, Jiang N, Dong ZY. Expression, purification and enzymatic characterization of Bacillus polymyxa β-glucosidase gene (bglA) in Escherichia coli [J]. Chin J Technol, 2004, 20: 741-844] 6 楚德强, 赵凯, 吴倩, 陶泰河, 鲍杰. 一株高耐受性乳酸菌的分离及其在木质纤维素发酵生产高浓度L-乳酸中的应用[J]. 华东理工大学学报自然科学版, 2011, 37: 521-523 [Chu DQ, Zhao K, Wu Q, Dao TH, Bao J. Isolation of a highly tolerant lactic acid bacterium and high titer L-lactic acid fermentation using lignocellulosic feedstock [J]. J East China Univ Sci Technol Nat Sci, 2011, 37: 521-523] 7 Zhao K, Qiao QA, ChuDQ, Gu HQ, Dao TH, Zhang J, Bao J. Simultaneous 816 应用与环境生物学报 Chin J Appl Environ Biol http://www.cibj.com/外源功能基因在木质纤维素依赖型乳酸菌...... 5期 saccharifification and high titer lactic acid fermentation of corn stover using a newly isolated lactic acid bacterium Pediococcus acidilactici DQ2 [J]. Bioresour Technol, 2012, 135: 481-489 8 Grant SGN, Jessee J, Bloom FR, Hanahan D. Differential plasmid rescue from transgenic mouse DNAs into Escherichia coli methylationrestriction mutants [J]. Proc Natl Acad Sci USA, 1990, 87: 4645-4649 9 Yanisch-Perron C, Vieira J, Messing J. Improved M13 phage cloning vectors and host strains: nucleotide sequences of the M13mp18 and pUC19 vectors [J]. Gene, 1985, 33: 103-119 10 Lin LC, Wang FG, Wei DZ, Chlorimuron ethyl as a new selectable marker for disrupting genes in the insect-pathogenic fungus. Metarhizium robertsii [J]. J Microbiol Methods, 2011, 87: 241-243 11 Van De Guchte M, Van Der Vossen J, Kok J, Venema G. Construction of a lactococcal expression vector: expression of hen egg white lysozyme in Lactococcus lactis subsp. lactis [J]. Appl Environ Microbiol, 1989, 55: 224 12 Garmyn D, Ferain T, Bernard N, Hols P, Delcour J. Cloning, nucleotide sequence, and transcriptional analysis of the Pediococcus acidilactici L-(+)-lactate dehydrogenase gene [J]. Appl Environ Microbiol, 1995, 61: 266-272 13 Rodríguez MC, Alegre MT, Mesas JM. Optimization of technical conditions for the transformation of Pediococcus acidilactici P60 by electroporation [J]. Plasmid, 2007, 58: 44-50 14 孙磊, 孔文涛, 孔健. 乳酸乳球菌电转化条件的研究[J]. 山东大学学报理学版, 2005, 40: 121-124 [Sun L, Kong WT, Kong J. The factors affected transformation efficiency of Lactococcus lactis by electroporation [J]. J Shandong Univ Sci Ed, 2005, 40: 121-124] 15 Grover AK, David MacMurchie D, Cushley RJ. Studies on almond emulsin β-D-glucosidase I. Isolation and characterization of a bifunctional isozyme [J]. Biochim Biophys Acta-Enzymol, 1977, 482: 98-108 16 Liu ZL, Weber SA, Cotta MA. Isolation and characterization of a β-Glucosidase from a Clavispora strain with potential applications in bioethanol production from cellulosic materials [J]. BioEnerg Res, 2012, 6 (1): 65-74 17 Chalfie M, Euskirchen YTG, Ward WW, Prasher DC. Green fluorescent protein as a marker for gene expression [J]. Science, 1994, 264: 802-805 18 Liang XB, Zhang LX, Zhong J, Huan Ld. Secretory expression of a heterologous nattokinase in Lactococcus lactis [J]. Appl Microbiol Biotechnol, 2007, 75: 95-101 19 Vannini V, Rodríguez A, Vera JL, Valdéz GFde, Taranto MP, Sesma F. Cloning and heterologous expression of Lactobacillus reuteri uroporphyrinogen Ⅲ synthase/methyltransferase gene (cobA/hemD): preliminary characterization [J]. Biotechnol Lett, 2011, 33: 1625–1632 20 Stephenson DP, Moore RJ, Allison G.E. Transformation of, and heterologous protein expression in, Lactobacillus agilis and Lactobacillus vaginalis isolates from the chicken gastrointestinal tract [J]. Appl Environ Microbiol, 2010, 77: 220-228 21 DE VOS WM. Gene expression systems for lactic acid bacteria [J]. Curr Opin Microbiol, 1999, 2: 289-295 22 Mierau I, Kleerebezem M. 10 years of the nisin-controlled gene expression system (NICE) in Lactococcus lactis [J]. Appl Microbiol Biotechnol, 2005, 68: 705-717 23 Borrero J, Jimenez JJ, Gutiez L, Herranz C, Cintas LM, Hernandez PE. Protein expression vector and secretion signal peptide optimization to drive the production, secretion, and functional expression of the bacteriocin enterocin A in lactic acid bacteria [J]. J Bacteriol, 2011, 156: 76-86 24 Hollmann A, Saviello M, Delfederico L, Saraiva TDL, Barh D, Jain N, Tiwari S, Chandra S, Gupta K, Zambare V, Kumar A, Christopher L, Misra AN, Kumavath RN, Azevedo V, Semorile L, Miyoshi A. Tight controlled expression and secretion of Lactobacillus brevis SlpA in Lactococcus lactis [J]. Biotechnol Lett, 2012, 34: 1275-1281 25 Le LY, Azevedo V, Oliveira SC, Freitas DA, Miyoshi A, Bermudez-Humaran LG, Nouaille S, Ribeiro LA, Leclercq S, Gabriel JE. Protein secretion in Lactococcus lactis: an efficient way to increase the overall heterologous protein production [J]. Microb Cell Fact, 2005, 4: 2

相似文献/References:

[1]李科,靳艳玲,甘明哲,等.木质纤维素生产燃料乙醇的关键技术研究现状[J].应用与环境生物学报,2008,14(06):877.[doi:10.3724/SP.J.1145.2008.00877]
 LI Ke,JIN Yanling,et al.Progress in Research of Key Techniques for Ethanol Production from Lignocellulose[J].Chinese Journal of Applied & Environmental Biology,2008,14(05):877.[doi:10.3724/SP.J.1145.2008.00877]
[2]何明雄,祝其丽,潘科,等.利用木质纤维素类生物质发酵生产乙醇重组菌株研究进展[J].应用与环境生物学报,2009,15(04):579.[doi:10.3724/SP.J.1145.2009.00579]
 HE Mingxiong,ZHU Qili,PAN Ke,et al.Progress in Ethanol Production with Lignocellulosic Biomass by Different Recombinant Strains[J].Chinese Journal of Applied & Environmental Biology,2009,15(05):579.[doi:10.3724/SP.J.1145.2009.00579]
[3]邓辉,王成,吕豪豪,等.堆肥过程放线菌演替及其木质纤维素降解研究进展[J].应用与环境生物学报,2013,19(04):581.[doi:10.3724/SP.J.1145.2013.00581]
 DENG Hui,WANG Cheng,LÜ,et al.Research Progress in Succession of Actinomycetal Communities and Their Capacity of Degrading Lignocellulose During Composting Process[J].Chinese Journal of Applied & Environmental Biology,2013,19(05):581.[doi:10.3724/SP.J.1145.2013.00581]
[4]秦改娟,王晓,陈青君,等.不同配方培养料生产双孢蘑菇过程中主要木质纤维素降解酶及物料组分的变化[J].应用与环境生物学报,2017,23(06):1035.[doi:10.3724/SP.J.1145.2017.01019]
 QIN Gaijuan,WANG Xiao,CHEN Qingjun**& ZHANG Guoqing.Changes of lignocellulolytic enzymes and material components in different compost formulas during the production of Agaricus bisporus[J].Chinese Journal of Applied & Environmental Biology,2017,23(05):1035.[doi:10.3724/SP.J.1145.2017.01019]
[5]游洋,吴波,胡国全,等.牛粪生物质资源综合利用研究进展[J].应用与环境生物学报,2018,24(02):401.[doi: 10.19675/j.cnki.1006-687x.2017.05007]
 YOU Yang,WU Bo,HU Guoquan,et al.Research progress of the comprehensive utilization of cow dung biomass resources[J].Chinese Journal of Applied & Environmental Biology,2018,24(05):401.[doi: 10.19675/j.cnki.1006-687x.2017.05007]
[6]高晓静 张昊琳 桑羽希 蔡盼盼 张国庆 陈青君**.利用杂草培养料栽培双孢蘑菇的可行性分析[J].应用与环境生物学报,2018,24(06):1.[doi:10.19675/j.cnki.1006-687x.2018.01033]
 GAO Xiaojing,ZHANG Haolin,SANG Yuxi,et al.Utilization of Reservoir Weeds for mushroom (Agaricus bisporus) production[J].Chinese Journal of Applied & Environmental Biology,2018,24(05):1.[doi:10.19675/j.cnki.1006-687x.2018.01033]

备注/Memo

备注/Memo:
*“973”计划项目(2011CB707406)、“863”计划项目(2012AA022301)、中国博士后基金(2011M500742, 2012T50380, 2012M520850)、中央高校基本科研业务费专项资金(WF0913005, 1114054, 1214025)和上海市重点学科建设项目(B505)资助 Supported by the National Basic Research Program of China (No. 2011CB707406), the National High-Tech Program of China (No. 2012AA022301), the China Postdoctoral Science Foundation (Nos. 2011M500742, 2012T50380, 2012M520850), the Fundamental Research Funds for the Central Universities of China (Nos. WF0913005, 1114054, 1214025), and the Shanghai Leading Academic Discipline Project (No. B505)
更新日期/Last Update: 2013-10-28