|本期目录/Table of Contents|

[1]黄玉红,靳艳玲,方扬,等.细胞壁多糖水解酶及其在非粮生物质原料转化中的应用研究进展[J].应用与环境生物学报,2013,19(05):881-890.[doi:10.3724/SP.J.1145.2013.00881]
 HUANG Yuhong,JIN Yanling,FANG Yang,et al.Application and Progress of Plant Cell Wall Polysaccharide Hydrolase in Non-food Based Biomass Conversation[J].Chinese Journal of Applied & Environmental Biology,2013,19(05):881-890.[doi:10.3724/SP.J.1145.2013.00881]
点击复制

细胞壁多糖水解酶及其在非粮生物质原料转化中的应用研究进展()
分享到:

《应用与环境生物学报》[ISSN:1006-687X/CN:51-1482/Q]

卷:
19卷
期数:
2013年05期
页码:
881-890
栏目:
综述
出版日期:
2013-10-25

文章信息/Info

Title:
Application and Progress of Plant Cell Wall Polysaccharide Hydrolase in Non-food Based Biomass Conversation
作者:
黄玉红靳艳玲方扬赵海
(1中国科学院成都生物研究所 成都 610041) (2中国科学院大学 北京 100049) (3中国科学院环境与应用微生物重点实验室 成都 610041)
Author(s):
HUANG Yuhong JIN Yanling FANG Yang ZHAO Hai
(1Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China) (2University of Chinese Academy of Sciences, Beijing 100049, China) (3Key Laboratory of Environmental and Applied Microbiology, Chinese Academy of Sciences, Chengdu 610041, China)
关键词:
细胞壁多糖水解酶块茎细胞壁多糖纤维素酶预处理燃料乙醇
Keywords:
plant cell wall polysaccharide hydrolase rhizome plant cell wall polysaccharide cellulase pretreatment bioethanol
分类号:
Q936 : TK69
DOI:
10.3724/SP.J.1145.2013.00881
摘要:
可再生生物能源在经济和环境的可持续性发展等方面具有潜在的巨大优势,然而生物能源工业化生产还面临着原料的选择和预处理等难题。对于解决这些难题,预处理技术特别是细胞壁多糖水解酶在非粮燃料乙醇(第1.5代和2代燃料乙醇)的生产过程中发挥了关键作用。本文主要综述了细胞壁多糖水解酶的特征及其在非粮燃料生物质原料转化中的应用:介绍了细胞壁多糖主要成分纤维素、半纤维素和果胶的结构特征,细胞壁多糖水解酶预处理安全、低能耗、成本低、设备简单以及环境友好等优势和多样性特点,及其在非粮燃料乙醇生产中的应用现状,总结了细胞壁化学结构研究、催化过程模型建立、分子水平及计算机科学水平等方面的新技术在该领域的应用。最后对细胞壁多糖水解酶的研究方向提出展望,我国已致力于第1.5代和2代燃料乙醇的研究,并将细胞壁多糖水解酶应用于非粮燃料乙醇工业化的生产。图4 参99
Abstract:
Developing renewable and sustainable bioethanol has led to great interests and intensive research efforts. However, a renewable bioethanol industry will face great challenge associated with its extant implementation. The pretreatment technologies, especially using plant cell wall polysaccharide hydrolase, have played a key role for the 1.5- and 2-generation non-food based bioethanol conversation. The major emphasis of this review was the characters of plant cell wall polysaccharide hydrolase and the enzymatic application on non-food based biomass conversion. The properties of the main components of plant cell wall, such as cellulose, hemicellulose and pectin, were introduced. Plant cell wall polysaccharides hydrolase were characterized as high efficiency, mild reactive conditions, economy, low equipment requirement, environmental friendliness and great variety. Some achievements were obtained in applying the enzymes in bioethanol production. This review also summarized the latest technology in this area, such as the study on structure of the plant cell wall, the model for enzyme catalysis, molecular and computer level. The future work focus was also forecasted in the paper. In China, the 1.5- and 2-generation non-food based bioethanol have been widely studied and the enzymes have great potential for industrial application. Fig 4, Ref 99

参考文献/References:

1 J?rgensen H, Vibe-Pedersen J, Larsen J, Felby C. Liquefaction of lignocellulose at high-solids concentrations [J]. Biotechnol Bioeng, 2007, 96 (5): 862-870 2 Fry SC. Primary cell wall metabolism: tracking the careers of wall polymers in living plant cells [J]. New Phytol, 2004, 161 (3): 641-675 3 Malhi Y. Carbon in the atmosphere and terrestrial biosphere in the 21st century [J]. Philos Trans R Soc London A, 2002, 360: 2925-2945 4 Willats WGT, McCartney L, Mackie W, Knox JP. Pectin: cell biology and prospects for functional analysis [J]. Plant Mol Biol, 2001, 47 (1): 9-27 5 Bauer S, Vasu P, Persson S, Mort AJ, Somerville CR. Development and application of a suite of polysaccharide-degrading enzymes for analyzing plant cell walls [J]. PNAS, 2006, 103: 11417-11422 6 Matthews JF, Skopec CE, Mason PE, Zuccato P, Torget RW, Sugiyama J, Himmel ME, Brady JW. Computer simulation studies of microcrystalline cellulose Iβ [J]. Carbohyd Res, 2006, 341 (1): 138-152 7 Brink Jvd, Vries RPd. Fungal enzyme sets for plant polysaccharide degradation [J]. Appl Microbiol Biotechnol, 2011, 91 (6): 1477-1492 8 Ebringerová A, Heinze T. Xylan and xylan derivatives – biopolymers with valuable properties. 1. Naturally occurring xylans structures, isolation procedures and properties [J]. Macromol Rapid Comm, 2000, 21 (9): 542-556 9 Wilkie KCB. The hemicelluloses of grasses and cereals [A]. In: Tipson RS, Derek H eds. Advances in Carbohydrate Chemistry and Biochemistry [C]. Salt Lake City: Academic Press, 1979. 215-264 10 Dey PM. Biochemistry of plant galactomannans [A]. In: Tipson RS, Derek H eds. Advances in Carbohydrate Chemistry and Biochemistry. Academic Press, 1978. 341-376 11 Vincken JP, York WS, Beldman C, Voragen AGJ. Two general branching patterns of xyloglucan, XXXG and XXGG [J]. Plant Physiol, 1997, 114 (1): 9-13 12 HV SPU. Hemicelluloses [J]. Annu Rev Plant Biol, 2010, 61: 263-289 13 Ebringerová A, Hromádková Z, Petráková E, Hricovíni M. Structural features of a water-soluble l-arabino-d-xylan from rye bran [J]. Carbohyd Res, 1990, 198 (1): 57-66 14 Xu C, Lepp?nen A-S, Eklund P, Holmlund P, Sj?holm R, Sundberg K, Willf?r S. Acetylation and characterization of spruce (Picea abies) galactoglucomannans [J]. Carbohyd Res, 2010, 345 (6): 810-816 15 Ridley BL, O’Neill MA, Mohnen D. Pectins: structure, biosynthesis, and oligogalacturonide-related signaling [J]. Phytochemistry, 2001, 57 (6): 929-967 16 Wong D. Enzymatic deconstruction of backbone structures of the ramified regions in pectins [J]. Protein J, 2008, 27 (1): 30-42 17 Somerville C, Bauer S, Brininstool G, Facette M, Hamann T, Milne J, Osborne E, Paredez A, Persson S, Raab T, Vorwerk S, Youngs H. Toward a systems approach to understanding plant cell walls [J]. Science, 2004, 5705: 2206-2211 18 Zhou W, Schüttler H-B, Hao Z, Xu Y. Cellulose hydrolysis in evolving substrate morphologies Ⅰ: a general modeling formalism [J]. Biotechnol Bioeng, 2009, 104 (2): 261-274 19 Schi?tt M, Licht HHDF, Lange L, Boomsma JJ. Towards a molecular understanding of symbiont function: identification of a fungal gene for the degradation of xylan in the fungus gardens of leaf-cutting ants [J]. BMC Microbiol, 2008, 8: 40-50 20 Juhász T, Szengyel Z, Réczey K, Siika-Aho M, Viikari L. Characterization of cellulases and hemicellulases produced by Trichoderma reesei on various carbon sources [J]. Process Biochem, 2005, 40 (11): 3519-3525 21 Swatloski RP, Spear SK, Holbrey JD, Rogers RD. Dissolution of cellose with ionic liquids [J]. J Am Chem Soc, 2002, 124 (18): 4974-4975 22 Zhao H, Jones CL, Baker GA, Xia S, Olubajo O, Person VN. Regenerating cellulose from ionic liquids for an accelerated enzymatic hydrolysis [J]. J Biotechnol, 2009, 139 (1): 47-54 23 Seema S, Blake AS, Kenneth PV. Visualization of biomass solubilization and cellulose regeneration during ionic liquid pretreatment of switchgrass [J]. Biotechnol Bioeng, 2009, 104 (1): 68-75 24 Zhang Y, Ding S, Mielenz J, Cui J, Elander R, Laser M, Himmel M, McMillan J, Lynd L. Fractionating recalcitrant lignocellulose at modest reaction conditions [J]. Biotechnol Bioeng, 2007, 97 (2): 214-223 25 Divne C, St?hlberg J, Teeri TT, Jones TA. High-resolution crystal structures reveal how a cellulose chain is bound in the 50 ? long tunnel of cellobiohydrolase I from Trichoderma reesei [J]. J Mol Biol, 1998, 275 (2): 309-325 26 Adney W, Jeoh T, Beckham G, Chou Y-C, Baker J, Michener W, Brunecky R, Himmel M. Probing the role of N-linked glycans in the stability and activity of fungal cellobiohydrolases by mutational analysis [J]. Cellulose, 2009, 16 (4): 699-709 27 Zhou F, Olman V, Xu Y. Large-scale analyses of glycosylation in cellulases [J]. Genomics Proteomics Bioinformatics, 2009, 7 (4): 194-199 28 Béguin PLM. The Cellulosome: an exocellular,. multiprotein complex specialized in cellulose degradation [J]. Crit Rev Biochem Mol Biol, 1996, 31 (3): 201-236 29 Ohmiya K, Sakka K, Karita S, Kimura T. Structure of cellulases and their applications [J]. Biotechnol Genet Eng Rev, 1997, 14: 365-414 30 Kataeva I, Li XL, Chen HZ, Choi SK, Ljungdahl L. Cloning and sequence analysis of a new cellulase gene encoding CelK, a major cellulosome component of Clostridium thermocellum: evidence for gene duplication and recombination [J]. J Bacteriol, 1999, 181 (17): 5288-5295 31 Schi?tt M, Licht HHDF, Lange L, Boomsma JJ. Towards a molecular understanding of symbiont function: identification of a fungal gene for the degradation of xylan in the fungus gardens of leaf-cutting ants [J]. BMC Microbiol, 2008, 8: 40 32 Henrissat B, Claeyssens M, Tomme P, Lemesle L, Mornon JP. Cellulase families revealed by hydrophobic cluster analysi [J]. Gene, 1989, 81 (1): 83-95 33 Brandi LC, Pedro MC, Corinne R, Thomas B, Vincent L, Bernard H. The Carbohydrate-active enzymes database (CAZy): an expert resource for glycogenomics [J]. Nucleic Acids Res, 2009, 37: D233-D238 34 Henrissat B. A classification of glycosyl hydrolases based on amino acid sequence similarities [J]. Biochem J, 1991, 280: 309-316 35 Henrissat B, Bairoch A. New families in the classification of glycosyl hydrolases based on amino acid sequence similarities [J]. Biochem J, 1993, 293: 781-788 36 Vuong T, Wilson D. Glycoside hydrolases: catalytic base/nucleophile diversity [J]. Biotechnol Bioeng, 2010, 107 (2): 195-205 37 Yip VLY, Withers SG. Breakdown of oligosaccharides by the process of elimination [J]. Curr Opin Chem Biol, 2006, 10 (2): 147-155 38 Dennis AB, Ilene K-M, David JL, James O, David LW. GenBank: update [J]. Nucleic Acids Res, 2004, 32: D23-D26 39 Altschul SF, Madden TL, Sch?ffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs [J]. Nucleic Acids Res, 1997, 25 (17): 3389-3402 40 Eddy SR. Multiple alignment using hidden Markov models [J]. Proc Int Conf Intell Syst Mol Biol, 1995, 3: 114-120 41 Cécile H, Artur R, Anthony WB, Susan EM, Harry JG, Knox JP. Carbohydrate-binding modules promote the enzymatic deconstruction of intact plant cell walls by targeting and proximity effects [J]. PNAS, 2010, 107 (34): 15293-15298 42 McCartney L, Gilbert HJ, Bolam DN, Boraston AB, Knox JP. Glycoside hydrolase carbohydrate-binding modules as molecular probes for the analysis of plant cell wall polymers [J]. Anal Biochem, 2004, 326 (1): 49-54 43 Blake A, McCartney L, Flint J, Bolam D, Boraston A, Gilbert H, Knox J. Understanding the biological rationale for the diversity of cellulose-directed carbohydrate-binding modules in prokaryotic enzymes [J]. J Biol Chem, 2006, 281: 29321-29329 44 Bauer S, Vasu P, Persson S, Mort AJ, Somerville CR. Development and application of a suite of polysaccharide-degrading enzymes for analyzing plant cell walls [J]. PNAS, 2006, 103 (30): 11417–11422 45 Watanabe H, Tokuda G. Animal cellulases [J]. Cell Mol Life Sci, 2001, 58 (9): 1167-1178 46 Wilson DB. Microbial diversity of cellulose hydrolysis [J]. Curr Opin Microbiol, 2011, 14 (3): 259-263 47 Kataeva I, Li XL, Chen HZ, Choi SK, Ljungdahl LG. Cloning and sequence analysis of a new cellulase gene encoding CelK, a major cellulosome component of Clostridium thermocellum: evidence for gene duplication and recombination [J]. J Bacteriol, 1999, 181 (17): 5288-5295 48 Blum DL, Kataeva IA, Li X, Ljungdahl LG. Feruloyl esterase activity of the Clostridium thermocellum cellulosome can be attributed to previously unknown domains of XynY and XynZ [J]. J Bacteriol 2000, 182 (5): 1346-1351 49 Kohring S, Wiegel J, Mayer F. Subunit composition and glycosidic activities of the cellulase complex from Clostridium thermocellum JW20 [J]. Appl Environ Microbiol, 1990, 56 (12): 3798-3804 50 Morag E, Bayer EA, Lamed R. Relationship of cellulosomal and noncellulosomal xylanases of Clostridium thermocellum to cellulose-degrading enzymes [J]. J Bacteriol, 1990, 172 (10): 6098-6105 51 Suen G, Weimer PJ, Stevenson DM, Aylward FO, Boyum J, Deneke J, Drinkwater C, Ivanova NN, Mikhailova N, Chertkov O, Goodwin LA, Currie CR, Mead D, Brumm PJ. The complete genome sequence of Fibrobacter succinogenes S85 reveals a cellulolytic and metabolic specialist [J]. PLoS ONE, 2011, 6 (4): e18814 52 Athanasios L, Konstantinos M, Natalia I, Iain A, Miriam L, Genevieve D, Michele M, Alla L, Susan L, Alex C, Paul R, David BW, Nikos K. Genome sequence and analysis of the soil cellulolytic actinomycete Thermobifida fusca YX [J]. J Bacteriol, 2007, 189 (6): 2477-2486 53 Lange L. The importance of fungi for a more sustainable future on our planet [J]. 2010, 24: 90-92 54 Battaglia E, Benoit I, Brink Jvd, Wiebenga A, Coutinho PM, Henrissat B, Vries RPd. Carbohydrate-active enzymes from the zygomycete fungus Rhizopus oryzae: a highly specialized approach to carbohydrate degradation depicted at genome level [J]. BMC Genomics, 2011, 12: 38 55 Baba Y, Shimonaka A, Koga J, Kubota H, Kono T. Alternative splicing produces two endoglucanases with one or two carbohydrate-binding modules in Mucor circinelloides [J]. J Bactechnol, 2005, 187 (9): 3045-3051 56 Martinez D, Berka RM, Henrissat B, Saloheimo M, Arvas M, Baker SE, Chapman J, Chertkov O, Coutinho PM, Cullen D, Danchin EGJ, Grigoriev IV, Harris P, Jackson M, Kubicek CP, Han CS, Ho I, Larrondo LF, Leon ALd, Magnuson JK, Merino S, Misra M, Nelson B, Putnam N, Robbertse B, Salamov AA, Schmoll M, Terry A, Thayer N, Westerholm-Parvinen A, Schoch CL, Yao J, Barabote R, Nelson MA, Detter C, Bruce D, Kuske CR, Xie G, Richardson P, Rokhsar DS, Lucas SM, Rubin EM, Dunn-Coleman N, Ward M, Brettin TS. Genome sequencing and analysis of the biomass-degrading fungus Trichoderma reesei (syn. Hypocrea jecorina) [J]. Nat Biotechnol, 2008, 26 (5): 553-560 57 Reese ET, Siu RGH, Levinson HS. The biological degradation of soluble cellulose derivatives and its relationship to the mechanism of cellulose hydrolysis [J]. J Bacteriol, 1950, 59 (4): 485-497 58 Din N, Damude HG, Gilkes NR, Miller RC, Warren Jr RA, Kilburn DG. C1-Cx revisited: intramolecular synergism in a cellulase [J]. PNAS, 1994, 91 (24): 11383-11387 59 Vuong TV, Wilson DB. Glycoside hydrolases: catalytic base/nucleophile diversity [J]. Biotechnol Bioeng, 2010, 107 (2): 195-205 60 Koshland DE. Stereochemistry and the mechanism of enzymatic reactions [J]. Biol Rev, 1953, 28 (4): 416-436 61 Rye CS, Withers SG. Glycosidase mechanisms [J]. Curr Opin Chem Biol, 2000, 4 (5): 573-580 62 Gideon JD, Michael LS. Sorting the diverse: the sequence-based classifications of carbohydrate-active enzymes [J]. Biochem J, 2008, 416 (3): 1-5 63 Morley T, Willis L, Whitfield C, Wakarchuk W, Withers S. A new sialidase mechanism: bacteriophage K1F endosialidase is an inverting glycosidase [J]. J Biol Chem, 2009, 284 (26): 17404-17410 64 Kitamura M, Okuyama M, Tanzawa F, Mori H, Kitago Y, Watanabe N, Kimura A, Tanaka I, Yao M. Structural and functional analysis of a glycoside hydrolase family 97 enzyme from Bacteroides thetaiotaomicron [J]. J Biol Chem, 2008, 283 (52): 36328-36337 65 Gilbert HJ, St?lbrand H, Brumer H. How the walls come crumbling down: recent structural biochemistry of plant polysaccharide degradation [J]. Curr Opin Plant Biol, 2008, 11 (3): 338-348 66 Herron SR, Benen JAE, Scavetta RD, Visser J, Jurnak F. Structure and function of pectic enzymes: virulence factors of plant pathogens [J]. PNAS, 2000, 97 (16): 8762-8769 67 Schubot FD, Kataeva IA, Blum DL, Shah AK, Ljungdahl LG, Rose JP, Wang B-C. Structural basis for the substrate specificity of the feruloyl esterase domain of the cellulosomal xylanase Z from Clostridium thermocellum [J]. Biochem, 2001, 40 (42): 12524-12532 68 Fries M, Ihrig J, Brocklehurst K, Shevchik VE, Pickersgill RW. Molecular basis of the activity of the phytopathogen pectin methylesterase [J]. EMBO J, 2007, 26 (17): 3879-3887 69 Taylor E, Gloster T, Turkenburg J, Vincent F, Brzozowski A, Dupont C, Shareck F, Centeno M, Prates J, Puchart V, Ferreira L, Fontes C, Biely P, Davies G. Structure and activity of two metal ion-dependent acetylxylan esterases involved in plant cell wall degradation reveals a close similarity to peptidoglycan deacetylases [J]. J Biol Chem, 2006, 281 (16): 10968-10975 70 甘明哲, 靳艳玲, 周玲玲, 戚天胜, 赵海. 适合鲜甘薯原料乙醇发酵的低粘度快速糖化预处理[J]. 应用与环境生物学报, 2009, 15 (2): 260-270 [Gan MZ, Jin YL, Zhou LL, Qi TS, Zhao H. Low viscosity and rapid saccharification pretreatment of fresh sweet potato for ethanol production [J]. Chin J Appl Environ Biol, 2009, 15 (2): 260-270] 71 Zhang L, Chen Q, Jin YL, Xue HL, Guan JF, Wang ZY, Zhao H. Energy-saving direct ethanol production from viscosity reduction mash of sweet potato at very high gravity (VHG) [J]. Fuel Process Technol, 2010, 91 (12): 1845-1850 72 Zhang L, Zhao H, Gan MZ, Jin YL, Gao XF, Chen Q, Guan JF, Wang ZY. Application of simultaneous saccharification and fermentation (SSF) from viscosity reducing of raw sweet potato for bioethanol production at laboratory, pilot and industrial scales [J]. Bioresource Technol, 2011, 102 (6): 4573-4579 73 黄玉红, 靳艳玲, 赵云, 李宇浩, 方杨, 张国华, 赵海. 鲜甘薯发酵生产燃料乙醇中的降粘工艺[J]. 应用与环境生物学报, 2012, 18 (4): 661-666 [Huang YH, Jin YL, Zhao Y, Li YH, Fang Y, Zhang GH, Zhao H. Viscosity reduction during fuel ethanol production by fresh sweet potato fermentation [J]. Chin J Appl Environ Biol, 2012, 18 (4): 661-666] 74 Huang Y, Jin Y, Fang Y, Li Y, Zhao H. Simultaneous utilization of non-starch polysaccharides and starch and viscosity reduction for bioethanol fermentation from fresh Canna edulis Ker. tubers [J]. Bioresource Technol, 2013, 128: 560-564 75 Chen Q, Jin Y, Zhang G, Fang Y, Xiao Y, Zhao H. Improving production of bioethanol from duckweed (Landoltia punctata) by pectinase pretreatment [J]. Energies, 2012, 5 (8): 3019-3032 76 Liu YS, Zeng YN, Baker OJ, Ding SY, Gilna P. Real-time imaging of plant cell wall structure at nanometer scale, with respect to cellulase accessibility and degradation kinetics. Genomic Science Awardee Meeting X: Bethesda, Maryland, 2012 77 Yarbrough JM, Himmel ME, Ding SY. Plant cell wall characterization using scanning probe microscopy techniques [J]. Biotechnol Biofuels, 2009, 2: 17 78 Kirby AR, Gunning AP, Waldron KW, Morris VJ, Ng A. Visualization of plant cell walls by atomic force microscopy [J]. Biophys J, 1996, 70 (3): 1138-1143 79 Davies LM, Harris PJ. Atomic force microscopy of microfibrils in primary cell walls [J]. Planta, 2003, 217 (2): 283-289 80 Day JPR, Domke KF, Rago G, Kano H, Hamaguchi Ho, Vartiainen EM, Bonn M. Quantitative coherent anti-stokes raman scattering (CARS) microscopy [J]. J Phys Chem B, 2011, 115 (24): 7713-7725 81 Wang L, Wang Y, Ragauskas A. Determination of cellulase colocalization on cellulose fiber with quantitative FRET measured by acceptor photobleaching and spectrally unmixing fluorescence microscopy [J]. Analyst, 2012, 137 (6): 1319-1324 82 Eriksson T, Karlsson J, Tjerneld F. A model explaining declining rate in hydrolysis of lignocellulose substrates with cellobiohydrolase I (Cel7A) and endoglucanase I (Cel7B) of Trichoderma reesei [J]. Appl Biochem Biotech, 2002, 101 (1): 41-60 83 Bomble Yannick J, Crowley Michael F, Xu Q, Himmel Michael E, Modeling the cellulosome using multiscale methods [A]. In: Computational Modeling in Lignocellulosic Biofuel Production [C]. American Chemical Society, Washington, DC, 2010. 75-98 84 Nimlos Mark R, Crowley Michael F eds. Computational Modeling in Lignocellulosic Biofuel Production [C]. ACS Symposium Series. Vol. 1052. American Chemical Society, Washington, DC, 2010 85 Beckham GT, Bomble YJ, Bayer EA, Himmel ME, Crowley MF. Applications of computational science for understanding enzymatic deconstruction of cellulose [J]. Curr Opin Biotech, 2011, 22 (2): 231-238 86 Yang Y, Shan K, Ping L, Lu J. Cloning, sequencing and expression of a novel xylanase cDNA from a newly isolated Aspergillus awamori in Pichia pastoris [J]. Afr J Biotechnol, 2008, 7 (23): 4251-4259 87 Liu JR, Duan CH, Zhao X, Tzen J, Cheng KJ, Pai CK. Cloning of a rumen fungal xylanase gene and purification of the recombinant enzyme via artificial oil bodies [J]. Appl Microbiol Biot, 2008, 79 (2): 225-233 88 Athanasios L, Konstantinos M, Natalia I, Iain A, Miriam L, Genevieve D, Michele M, Alla L, Susan L, Alex C, Paul R, David BW, Nikos K. Genome sequence and analysis of the soil cellulolytic actinomycete Thermobifida fusca YX [J]. J Bacteriol, 2007, 189 (6): 2477-2486 89 Martinez D, Berka RM, Henrissat B, Saloheimo M, Arvas M, Baker SE, Chapman J, Chertkov O, Coutinho PM, Cullen D, Danchin EGJ, Grigoriev IV, Harris P, Jackson M, Kubicek CP, Han CS, Ho I, Larrondo LF, de Leon AL, Magnuson JK, Merino S, Misra M, Nelson B, Putnam N, Robbertse B, Salamov AA, Schmoll M, Terry A, Thayer N, Westerholm-Parvinen A, Schoch CL, Yao J, Barabote R, Nelson MA, Detter C, Bruce D, Kuske CR, Xie G, Richardson P, Rokhsar DS, Lucas SM, Rubin EM, Dunn-Coleman N, Ward M, Brettin TS. Genome sequencing and analysis of the biomass-degrading fungus Trichoderma reesei (syn. Hypocrea jecorina) [J]. Nat Biotech, 2008, 26 (5): 553-560 90 Martinez D, Challacombe J, Morgenstern I, Hibbett D, Schmoll M, Kubicek CP, Ferreira P, Ruiz-Duenas FJ, Martinez AT, Kersten P, Hammel KE, Wymelenberg AV, Gaskell J, Lindquist E, Sabat G, BonDurant SS, Larrondo LF, Canessa P, Vicuna R, Yadav J, Doddapaneni H, Subramanian V, Pisabarro AG, Lavín JL, Oguiza JA, Master E, Henrissat B, Coutinho PM, Harris P, Magnuson JK, Baker SE, Bruno K, Kenealy W, Hoegger PJ, Kües U, Ramaiya P, Lucas S, Salamov A, Shapiro H, Tu H, Chee CL, Misra M, Xie G, Teter S, Yaver D, James T, Mokrejs M, Pospisek M, Grigoriev IV, Brettin T, Rokhsar D, Berka R, Cullen D. Genome, transcriptome, and secretome analysis of wood decay fungus Postia placenta supports unique mechanisms of lignocellulose conversion [J]. PNAS, 2009, 106 (6): 1954-1959 91 Zhu L, Wu Q, Dai J, Zhang S, Wei F. Evidence of cellulose metabolism by the giant panda gut microbiome [J]. Proc Natl Acad Sci, 2011 92 Hess M, Sczyrba A, Egan R, Kim T-W, Chokhawala H, Schroth G, Luo S, Clark DS, Chen F, Zhang T, Mackie RI, Pennacchio LA, Tringe SG, Visel A, Woyke T, Wang Z, Rubin EM. Metagenomic discovery of biomass-degrading genes and genomes from cow rumen [J]. Science, 2011, 331 (6016): 463-467 93 Heinzelman P, Snow CD, Wu I, Nguyen C, Villalobos A, Govindarajan S, Minshull J, Arnold FH. A family of thermostable fungal cellulases created by structure-guided recombination [J]. PNAS, 2009, 106: 5610-5615 94 Korkegian A, Black ME, Baker D, Stoddard BL. Computational thermostabilization of an enzyme [J]. Science, 2005, 308 (5723): 857-860 95 Decker S, Brunecky R, Tucker M, Himmel M, Selig M. High-throughput screening techniques for biomass conversion [J]. Bioenerg Res, 2009, 2 (4): 179-192 96 Selig M, Tucker M, Law C, Doeppke C, Himmel M, Decker S. High throughput determination of glucan and xylan fractions in lignocelluloses [J]. Biotechnol Lett, 2011, 33 (5): 961-967 97 DeMartini JD, Pattathi S, Avci U, Szekalski K, Mazumder K, Hahn MG, Wyman CE. Application of monoclonal antibodies to investigate plant cell wall deconstruction for biofuels production [J]. Energ Environ Sci, 2011, 4: 4332-4339 98 Moller I, S?rensen I, Bernal A, Blaukopf C, Lee K, ?bro J, Pettolino F, Roberts A, Mikkelsen J, Knox J, Bacic A, Willats W. High-throughput mapping of cell-wall polymers within and between plants using novel microarrays [J]. Plant J, 2007, 50 (6): 1118-1128 99 Busk PK, Lange L. A novel method of providing a library of n-mers or biopolymers [P]. EP11152232.2. 2011, Denmark

备注/Memo

备注/Memo:
收稿日期 Received: 2012-12- 接受日期 Accepted: 2013-*“十二五”国家科技支撑计划(2011BAD22B03)、现代农业产业技术体系建设专项(CARS-11-B-17)和中国科学院知识创新工程重要方向项目(KSCX2-EW-J-22,KSCX2-EW-G-1-1) Supported by the National Key Technology R & D Program of China (No. 2011BAD22B03), the Modern Agriculture Industry Technology System Construction of China (No. CARS-11-B-17) and the Knowledge Innovative Program of the Chinese Academy of Sciences (Nos. KSCX2-EW-J-22, KSCX2-EW-G-1-1) **通讯作者 Corresponding author (E-mail: zhaohai@cib.ac.cn)
更新日期/Last Update: 2013-10-28