|本期目录/Table of Contents|

[1]任海伟,李金平,张轶,等.白酒丢糟糖化条件的优化及乙醇发酵[J].应用与环境生物学报,2013,19(05):833-837.[doi:10.3724/SP.J.1145.2013.00833]
 REN Haiwei,LI Jinping,ZHANG Yi,et al.Optimization of Saccharification for Distillers Grains and Ethanol Fermentation[J].Chinese Journal of Applied & Environmental Biology,2013,19(05):833-837.[doi:10.3724/SP.J.1145.2013.00833]
点击复制

白酒丢糟糖化条件的优化及乙醇发酵()
分享到:

《应用与环境生物学报》[ISSN:1006-687X/CN:51-1482/Q]

卷:
19卷
期数:
2013年05期
页码:
833-837
栏目:
研究论文
出版日期:
2013-10-25

文章信息/Info

Title:
Optimization of Saccharification for Distillers Grains and Ethanol Fermentation
作者:
任海伟李金平张轶王永刚陈晓前李志忠
(1兰州理工大学西部能源与环境研究中心 兰州 730050) (2四川大学生命科学学院 成都 610041) (3中国科学院大学 北京 100049)
Author(s):
REN Haiwei LI Jinping ZHANG Yi WANG Yonggang CHEN Xiaoqian LI Zhizhong
(1Western China Energy & Environment Research Center, Lanzhou University of Technology, Lanzhou 730050, China) (2School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou 730050, China) (3School of Energy and Power Engineering, Lanzhou University of Technology, Lanzhou 730050, China)
关键词:
白酒丢糟酸水解糖化还原糖糠醛扫描电镜(SEM)红外光谱(FTIR)乙醇发酵
Keywords:
distiller grains acid hydrolysis saccharification reducing sugar furfural ?scanning electron microscopy (SEM) infrared spectroscopy (FTIR) ethanol fermentation
分类号:
TS261.9
DOI:
10.3724/SP.J.1145.2013.00833
摘要:
为探索白酒丢糟水解糖化的最优工艺及乙醇发酵可行性,以还原糖浓度和糠醛生成量为指标,考察温度、固液比、混合酸浓度和时间4个因素对混合酸水解糖化丢糟效果的影响,利用正交试验优化糖化条件,采用扫描电镜(SEM)和红外光谱(FTIR)技术研究丢糟水解前后的结构特性,并利用最优条件获得的丢糟水解液发酵制备乙醇. 结果表明,最优的丢糟糖化条件为温度100 ℃,固液比1:12,混合酸浓度2.5%,水解时间120 min,该条件下水解液中的还原糖浓度为59.32 g/L,糠醛生成量为8.37 g/L. SEM结果显示,酸解糖化后的丢糟结构发生了明显变化,木质纤维结构被破坏,基本形貌完全改变;FTIR证明丢糟中纤维素和半纤维素成分被部分降解,水解糖化效果明显. 酿酒酵母(Saccharomyces cerevisiae)发酵丢糟水解液72 h后的乙醇浓度和产率分别为11.82 g/L和0.14 g/g,还原糖利用率为80.47%. 说明丢糟经水解糖化后发酵乙醇是可行的. 图4 表3 参33
Abstract:
Distiller抯 grains (DG) is an abundant source of biomass that can be hydrolyzed to yield fermentation sugar for t?he production of fuel ethanol. In order to improve the saccharification efficiency and investigate the hydrolysis characteristics of DG, this research studied the effect of temperature, mixed acid concentration, the solid-liquid ratio and hydrolysis time on the concentration of reducing sugar and the yield quantity of furfural. In addition, the structure of DG and acid hydrolysis residue were characterized by methods of SEM and FTIR. DG saccharification liquid was fermented by Saccharomyces cerevisiae to produce ethanol. The results of the orthogonal test and range analysis of experiment showed the optimal levels for saccharification as temperature of 100 ℃, solid-liquid ratio of 1:12, mixed acid concentration of 2.5% and hydrolysis time of 120 min. The concentration of reducing sugar and the yield quantity of furfural was 59.32 g/L and 8.37 g/L respectively under optimized conditions. SEM analysis show that the structure of DG after hydrolyzing was destroyed remarkably, lignocellulosic structure destroyed, and the basic morphology changed totally. The FTIR results proved that the composition of cellulose and hemicellulose were partially hydrolyzed, with lignin removed. Accordingly, the concentration of ethanol was up to 11.82 g/L, with the yield 0.14 g/g and utilization of reducing sugar 80.47% after 72h. In conclusion, it is feasible to produce ethanol by fermenting saccharification liquid from DG. Fig 4, Tab 3, Ref 33

参考文献/References:

Rabaey K, Rodríguez J, Blackall LL, Keller J, Gross P, Batstone D, Verstraete W, Nealson KH. Microbial ecology meets electrochemistry: electricity-driven and driving communities [J]. ISME J, 2007, 1 (1): 9-18 Liu H, Ramnarayanan R, Logan BE. Production of electricity during wastewater treatment using a single chamber microbial fuel cell [J]. Environ Sci Technol, 2004, 38 (7): 2281-2285 Gregory KB, Lovley DR. Remediation and recovery of uranium from contaminated subsurface environments with electrodes [J]. Environ Sci Technol, 2005, 39 (22): 8943-8947 Tandukar M, Huber SJ, Onodera T, Pavlostathis SG. Biological chromium(VI) reduction in the cathode of a microbial fuel cell [J]. Environ Sci Technol, 2009, 43 (21): 8159-8165 Li Y, Lu A, Ding H, Jin S, Yan Y, Wang C, Zena C, Wang X . Cr(VI) reduction at rutile-catalyzed cathode in microbial fuel cells [J]. Electrochem Commun, 2009, 11 (7): 1496-1499 Huang L, Chai X, Chen G, Logan BE. Effect of set potential on hexavalent chromium reduction and electricity generation from biocathode microbial fuel cells [J]. Environ Sci Technol, 2011, 45 (11): 5025-5031 Clauwaert P, Rabaey K, Aelterman P, De Schamphelaire L, Pham TH, Boeckx P, Boon N, Verstraete W. Biological denitrification in microbial fuel cells [J]. Environ Sci Technol, 2007, 41 (9): 3354-3360 Puig S, Serra M, Vilar-Sanz A, Cabre M, Baneras L, Colprim J, Balaguera MD. Autotrophic nitrite removal in the cathode of microbial fuel cells [J]. Bioresource Technol, 2011, 102 (6): 4462-4467 Zhan G, Zhang L, Li D, Su W, Tao Y, Qian J. Autotrophic nitrogen removal from ammonium at low applied voltage in a single-compartment microbial electrolysis cell [J]. Bioresour Technol, 2012, 116: 271-277 Aulenta F, Canosa A, Reale P, Rossetti S, Panero S, Majone M. Microbial reductive dechlorination of trichloroethene to ethene with electrodes serving as electron donors without the external addition of redox mediators [J]. Biotechnol Bioeng, 2009, 103 (1): 85-91 Aulenta F, Reale P, Canosa A, Rossetti S, Panero S, Majone M. Characterization of an electro-active biocathode capable of dechlorinating trichloroethene and cis-dichloroethene to ethene [J]. Biosens Bioelectron, 2010, 25 (7): 1796-1802 Cheng S, Logan BE. Sustainable and efficient biohydrogen production via electrohydrogenesis [J]. Proc Natl Acad Sci, 2007, 104 (47): 18871-18873 Villano M, Monaco G, Aulenta F, Majone M. Electrochemically assisted methane production in a biofilm reactor [J]. J Power Sources, 2011, 196 (22): 9467-9472 Cheng S, Xing D, Call DF, Logan BE . Direct biological conversion of electrical current into methane by electromethanogenesis [J]. Environ Sci Technol, 2009, 43 (10): 3953-3958 Villano M, Aulenta F, Ciucci C, Ferri T, Giuliano A, Majone M. Bioelectrochemical reduction of CO2 to CH4 via direct and indirect extracellular electron transfer by a hydrogenophilic methanogenic culture [J]. Bioresour Technol, 2010, 101 (9): 3085-3090 Nevin KP, Woodard TL, Franks AE, Summers ZM, Lovley DR. Microbial electrosynthesis: feeding microbes electricity to convert carbon dioxide and water to multicarbon extracellular organic compounds [J]. mBio, 2010, 1 (2): e00103-00110 Nevin KP, Hensley SA, Franks AE, Summers ZM, Ou J, Woodard TL, Snoeyenbos-West OL, Lovley DR. Electrosynthesis of organic compounds from carbon dioxide is catalyzed by a diversity of acetogenic microorganisms [J]. Appl Environ Microbiol, 2011, 77 (9): 2882-2886 Li H, Opgenorth PH, Wernick DG, Rogers S, Wu TY, Higashide W, Malati P, Huo YX, Cho KM, Liao JC. Integrated electromicrobial conversion of CO2 to higher alcohols [J]. Science, 2012, 335 (6076): 1596-1596 K?pke M, Held C, Hujer S, Liesegang H, Wiezer A, Wollherr A, Ehrenreich A, Lieb W, Gottschalk G, Dürre P. Clostridium ljungdahlii represents a microbial production platform based on syngas [J]. Proc Nat Acad Sci, 2010, 107 (29): 13087-13092 Rabaey K, Rozendal RA. Microbial electrosynthesis — revisiting the electrical route for microbial production [J]. Nat Rev Microbiol, 2010, 8 (10): 706-716 Rabaey K, Girguis P, Nielsen LK. Metabolic and practical considerations on microbial electrosynthesis [J]. Curr Opin Biotechnol, 2011, 22 (3): 371-377 Markewitz P, Kuckshinrichs W, Leitner W, Linssen J, Zapp P, Bongartz R, Schreiber A, Müller TE. Worldwide innovations in the development of carbon capture technologies and the utilization of CO2 [J]. Energy Environ Sci, 2012, 5 (6): 7281-7305 Mossa AR, Jouanyb JP, Newbold J. Methane production by ruminants: its contribution to global warming [J]. Ann Zootech, 2000, 49 (3): 231-253 Breznak JA, Kane MD. Microbial H2/CO2 acetogenesis in animal guts: nature and nutritional significance [J]. FEMS Microbiol Rev, 1990, 7 (3-4): 309-313 Su W, Zhang L, Li D, Zhan G, Qian J, Tao Y. Dissimilatory nitrate reduction by Pseudomonas alcaliphila with an electrode as the sole electron donor [J]. Biotechnol Bioeng, 2012, 109 (11): 2904-2910 Muyzer G, Dewaal EC, Uitterlinden AG. Profiling of complex microbial-populations by denaturing gradient gel-electrophoresis analysis of polymerarse chain reaction-amplified genes-coding for 16S ribosomal-RNA [J]. Appl Environ Microbiol. 1993, 59 (3): 695-700 Zhao HZ, Zhang Y, Chang YY, Li ZS. Conversion of a substrate carbon source to formic acid for carbon dioxide emission reduction utilizing series-stacked microbial fuel cells [J]. J Power Sources, 2012, 217: 59-64 Zhao H, Zhang Y, Zhao B, Chang Y, Li Z. Electrochemical reduction of carbon dioxide in an MFC–MEC system with a layer-by-layer self-assembly carbon nanotube/cobalt phthalocyanine modified electrode [J]. Environ Sci Technol, 2012, 46 (9): 5198-5204 Gillett NP, Matthews HD. Accounting for carbon cycle feedbacks in a comparison of the global warming effects of greenhouse gases [J]. Environ Res Lett, 2010, 5 (3), doi:10.1088/1748-9326/5/3/034011 Sparling R, Daniels L. The specificity of growth-inhibition of methanogenic bacteria gy bromoethanesulfonate [J]. Can J Microbiol, 1987. 33 (12): 1132-1136 Tugtas AE, Pavlostathis SG. Effect of sulfide on nitrate reduction in mixed methanogenic cultures [J]. Biotechnol Bioeng, 2007, 97 (6): 1448-1459 Tugtas AE, Pavlostathis SG. Electron donor effect on nitrate reduction pathway and kinetics in a mixed methanogenic culture [J]. Biotechnol Bioeng, 2007, 98 (4): 756-763 郭静, 徐自祥, 付亚星, 刘碧芸, 孟静, 肖可, 付德刚, 孙啸. 产电微生物基因组及代谢网络分析[J]. 应用与环境生物学报, 2012, 18 (6): 1075-1084 [Guo J, Xu ZX, Fu YX, Liu BY, Meng J, Xiao K, Fu DG, Sun X. Analysis on electricigen genomes and metabolic networks [J]. Chin J Appl Environ Biol, 2012, 18 (6): 1075-1084] Rotaru A-E, Shrestha PM, Liu F, Ueki T, Nevin K, Summers ZM, Lovley DR. Interspecies electron transfer via hydrogen and formate rather than direct electrical connections in cocultures of Pelobacter carbinolicus and Geobacter sulfurreducens [J]. Appl Environ Microbiol, 2012, 78 (21): 7645-7651 Zhang T, Nie H, Bain TS, Lu H, Cui M, Snoeyenbos-West OL, Franks AE, Nevin KP, Russell TP, Lovley DR. Improved cathode materials for microbial electrosynthesis [J]. Energy Environ Sci, 2013, 6 (1): 217-224

相似文献/References:

[1]孙彦平,靳艳玲,郜晓峰,等.纤维素酸解副产物对Clostridium acetobutylicum CICC8012发酵的影响[J].应用与环境生物学报,2010,16(06):845.[doi:10.3724/SP.J.1145.2010.00845]
 SUN Yanping,JIN Yanling,GAO Xiaofeng,et al.Effects of Byproducts from Acid Hydrolysis of Lignocellulose on Butanol Fermentation by Clostridium acetobutylicum CICC8012[J].Chinese Journal of Applied & Environmental Biology,2010,16(05):845.[doi:10.3724/SP.J.1145.2010.00845]

备注/Memo

备注/Memo:
收稿日期 Received: 2012-09-03 接受日期 Accepted: 2013-06-28
更新日期/Last Update: 2013-10-28