|本期目录/Table of Contents|

 WU Bo,HE Mingxiong,FENG Hong,et al.Construction and Characterization of Restriction-Modification Deficient Mutants in Zymomonas mobilis ZM4[J].Chinese Journal of Applied & Environmental Biology,2013,19(02):189-197.[doi:10.3724/SP.J.1145.2013.00189]





Construction and Characterization of Restriction-Modification Deficient Mutants in Zymomonas mobilis ZM4
吴波 何明雄 冯红 张艳 胡启春 张义正
"(1四川大学生命科学学院,四川省分子生物学与生物技术重点实验室,生物资源与生态环境教育部重点实验室 成都 610064)(2农业部沼气科学研究所生物质能技术研究中心 成都 610041)(3农业部农村可再生能源开发与利用重点实验室 成都 610041)"
WU Bo HE Mingxiong FENG Hong ZHANG Yan HU Qichun ZHANG Yizheng
(1Sichuan Key Laboratory of Molecular Biology & Biotechnology and Key Laboratory of Resource Biology & Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610064, China)
"Zymomonas mobilis restriction-modification systems gene knockout electroporation ethanol fermentation"
Q933 : TK63
低遗传转化率阻碍了产乙醇模式菌——运动发酵单胞菌的遗传或分子生物学操作. 本研究将运动发酵单胞菌菌株ZM4的5个限制-修饰系统相关基因失活,构建了5个限制-修饰系统突变菌株. 研究结果表明:在突变株Zmmrr和Zm1933中,甲基化穿梭表达质粒pBBR1MCS-tet的电转化率分别提高了17倍和2倍,而限制修饰基因ZMO0575的失活则明显降低了甲基化修饰质粒和非甲基化质粒的转化率. 较之其它3个突变株,突变株Zmmrr和Zm1933具有更高的遗传稳定性. 发酵实验结果进一步表明这些限制-修饰系统突变株并未显著改变运动发酵单胞菌的主要性质,例如细胞生长、葡萄糖利用率和乙醇产量等. 研究运动发酵单胞菌的限制-修饰系统将有助于构建适合于分子遗传操作的基因工程菌株. 图5 表3 参37
"Low transformation efficiency is an obstacle to genetic or molecular manipulations in ethanologen Zymomonas mobilis. In the present study, 5 defective strains were constructed in Z. mobilis strain ZM4 by inactivating restriction-modification (R-M) system candidate genes. Inactivation of ZMO0028 (mrr) and ZMO1933 significantly improved electroporation efficiency by 17 folds and 2 folds when ZM4 was transformed with the methylated plasmid DNA. Disruption of ZMO0575 significantly decreased the transformation efficiency when transformed with both methylated and unmethylated plasmid DNAs. In comparison with other mutants, Zmmrr and Zm1933 displayed high stability. Furthermore, fermentation results showed that R-M mutants did not significantly alter the major bacterial traits such as growth, glucose utilization and ethanol yield. In conclusion, R-M systems in Z. mobilis were investigated in this study, and the characterization of those R-M genes contributed to creating engineering strains suitable for genetic and molecular manipulations. Fig 5, Tab 3, Ref 37"


"1 Ferraz HC, Borges CP, Alves TL. Sorbitol and gluconic acid production using permeabilized Zymomonas mobilis cells confined by hollow-fiber membranes [J]. Appl Biochem Biotechnol, 2000, 89 (1): 43-532 Jeon YJ, Xun Z, Rogers PL. Comparative evaluations of cellulosic raw materials for second generation bioethanol production [J]. Lett Appl Microbiol, 2010, 51 (5): 518-5243 dos Santos Dda S, Camelo AC, Rodrigues KC, Carlos LC, Pereira N, Jr. Ethanol production from sugarcane bagasse by Zymomonas mobilis using simultaneous saccharification and fermentation (SSF) process [J]. Appl Biochem Biotechnol, 2010, 161 (1-8): 93-1054 Lawford HG, Rousseau JD. Steady-state measurements of lactic acid production in a wild-type and a putative D-lactic acid dehydrogenase-negative mutant of Zymomonas mobilis: influence of glycolytic flux [J]. Appl Biochem Biotechnol, 2002, 98-100: 215-2285 Linger JG, Adney WS, Darzins A. Heterologous expression and extracellular secretion of cellulolytic enzymes by Zymomonas mobilis [J]. Appl Environ Microbiol, 2010, 76 (19): 6360-63696 He MX, Feng H, Bai F, Li Y, Liu X, Zhang YZ. Direct production of ethanol from raw sweet potato starch using genetically engineered Zymomonas mobilis [J]. Afr J Microbiol Res, 2009, 3 (11): 721-7267 何明雄, 祝其丽, 潘科, 胡启春. 利用木质纤维素类生物质发酵生产乙醇重组菌株研究进展[J]. 应用与环境生物学报, 2009, 15 (4): 579-584 [He MX, Zhu QL, Pan K, Hu QC. Progress in ethanol production with Lignocellulosic biomass by different recombinant strains [J]. Chin J Appl Environ Biol, 2009, 15 (4): 579-584]8 Yang S, Land ML, Klingeman DM, Pelletier DA, Lu TY, Martin SL, Guo HB, Smith JC, Brown SD. Paradigm for industrial strain improvement identifies sodium acetate tolerance loci in Zymomonas mobilis and Saccharomyces cerevisiae [J]. Proc Natl Acad Sci USA, 2010, 107 (23): 10395-104009 Lee KY, Park JM, Kim TY, Yun H, Lee SY. The genome-scale metabolic network analysis of Zymomonas mobilis ZM4 explains physiological features and suggests ethanol and succinic acid production strategies [J]. Microb Cell Fact, 2010, 9: 10.1186/1475-2859-9-94 [doi]10 Kouvelis VN, Davenport KW, Brettin TS, Bruce D, Detter C, Han C, Nolan M, Tapia R, Damoulaki A, Kyrpides NC, Typas MA, Pappas KM. Genome sequence of the ethanol-producing Zymomonas mobilis subsp. pomaceae lectotype ATCC 29192 [J]. J Bacteriol, 2011, 193 (18): 5049-505011 Kouvelis VN, Saunders E, Brettin TS, Bruce D, Detter C, Han C, Typas MA, Pappas KM. Complete genome sequence of the ethanol producer Zymomonas mobilis NCIMB 11163 [J]. J Bacteriol, 2009, 191 (22): 7140-714112 Pappas KM, Kouvelis VN, Saunders E, Brettin TS, Bruce D, Detter C, Balakireva M, Han C, Savvakis G, Kyrpides NC, Typas MA. Genome sequence of the ethanol-producing Zymomonas mobilis subsp. mobilis lectotype ATCC 10988 [J]. J Bacteriol, 2011, 193 (18): 5051-505213 Yang S, Pappas KM, Hauser LJ, Land ML, Chen GL, Hurst GB, Pan C, Kouvelis VN, Typas MA, Pelletier DA, Klingeman DM, Chang YJ, Samatova NF, Brown SD. Improved genome annotation for Zymomonas mobilis [J]. Nat Biotechnol, 2009, 27 (10): 893-89414 李科, 靳艳玲, 甘明哲, 刘晓风, 赵海. 木质纤维素生产燃料乙醇的关键技术研究现状[J]. 应用与环境生物学报, 2008, 14 (6): 877-884 [Li K, Jin YL, Gan MZ, Liu XF, Zhai H. Progress in research of key techniques for ethanol production from lignocellulose [J]. Chin J Appl Environ Biol, 2008, 14 (6): 877-884]15 何明雄, 张艳, 胡启春, 胡国全, 祝其丽, 潘科, 李青. 竹子生物质废弃物前处理技术比较研究[J]. 应用与环境生物学报, 2011, 17 (2): 232-236 [He MX, Zhang Y, Hu QC, Hu GQ, Zhu QL, Pan K, Li Q. Comparison of different pretreatment methods for bamboo residues [J]. Chin J Appl Environ Biol, 2011, 17 (2): 232-236]16 Browne GM, Skotnicki ML, Goodman AE, Rogers PL. Transformation of Zymomonas mobilis by a hybrid plasmid [J]. Plasmid, 1984, 12 (3): 211-21417 Dong HW, Bao J, Ryu DD, Zhong JJ. Design and construction of improved new vectors for Zymomonas mobilis recombinants [J]. Biotechnol Bioeng, 2011, 108 (7): 1616-162718 Kruger DH, Gola G, Weisshuhn I, Hansen S. The ocr gene function of bacterial viruses T3 and T7 prevents host-controlled modification [J]. J Gen Virol, 1978, 41 (1): 189-19219 Zavilgelsky GB, Rastorguev SM. DNA mimicry by proteins as effective mechanism for regulation of activity of DNA-dependent enzymes [J]. Biochemistry (Mosc), 2007, 72 (9): 913-919, 98220 Blakely GW, Murray NE. Control of the endonuclease activity of type I restriction-modification systems is required to maintain chromosome integrity following homologous recombination [J]. Mol Microbiol, 2006, 60 (4): 883-89321 O’Connell Motherway M, O’Driscoll J, Fitzgerald GF, Van Sinderen D. Overcoming the restriction barrier to plasmid transformation and targeted mutagenesis in Bifidobacterium breve UCC2003. Microb Biotechnol, 2009, 2 (3): 321-33222 Kerr A, Jeon Y, Svenson C, Rogers P, Neilan B. DNA restriction-modification systems in the ethanologen, Zymomonas mobilis ZM4 [J]. Appl Microbiol Biotechnol, 2011, 89 (3): 761-76923 Goodman AE, Rogers PL, Skotnicki ML. Minimal medium for isolation of auxotrophic Zymomonas mutants [J]. Appl Environ Microbiol, 1982, 44 (2): 496-49824 Kovach ME, Elzer PH, Steven Hill D, Robertson GT, Farris MA, Roop RM. Four new derivatives of the broad-host-range cloning vector pBBR1MCS, carrying different antibiotic-resistance cassettes [J]. Gene, 1995, 166 (1): 175-17625 Szewczyk E, Nayak T, Oakley C, Edgerton H, Xiong Y, Taheri-Talesh N, Osmani S, Oakley B. Fusion PCR and gene targeting in Aspergillus nidulans [J]. Nat Biotechnol, 2007, 1: 311126 Zhang M, Eddy C, Deanda K, Finkelstein M, Picataggio S. Metabolic engineering of a pentose metabolism pathway in ethanologenic Zymomonas mobilis [J]. Science, 1995, 267: 240-24327 Kerr AL, Jeon YJ, Svenson CJ, Rogers PL, Neilan BA. DNA restriction-modification systems in the ethanologen, Zymomonas mobilis ZM4 [J]. Appl Microbiol Biotechnol, 2011, 89 (3): 761-76928 Jeon YJ, Svenson CJ, Rogers PL. Over-expression of xylulokinase in a xylose-metabolising recombinant strain of Zymomonas mobilis [J]. FEMS Microbiol Lett, 2005, 244 (1): 85-9229 Douka E, Christogianni A, Koukkou AI, Afendra AS, Drainas C. Use of a green fluorescent protein gene as a reporter in Zymomonas mobilis and Halomonas elongata [J]. FEMS Microbiol Lett, 2001, 201 (2): 221-22730 Lin TL, Shun CT, Chang KC, Wang JT. Isolation and characterization of a HpyC1I restriction-modification system in Helicobacter pylori [J]. J Biol Chem, 2004, 279 (12): 11156-1116231 Zheng Y, Cohen-Karni D, Xu D, Chin HG, Wilson G, Pradhan S, Roberts RJ. A unique family of Mrr-like modification-dependent restriction endonucleases [J]. Nucleic Acids Res, 2010, 38 (16): 5527-553432 Christogianni A, Douka E, Koukkou AI, Hatziloukas E, Drainas C. Transcriptional analysis of a gene cluster involved in glucose tolerance in Zymomonas mobilis: evidence for an osmoregulated promoter [J]. J Bacteriol, 2005, 187 (15): 5179-518833 Douka E, Koukkou AI, Vartholomatos G, Frillingos S, Papamichael EM, Drainas C. A Zymomonas mobilis mutant with delayed growth on high glucose concentrations [J]. J Bacteriol, 1999, 181 (15): 4598-460434 Zhang Y, Ma R, Zhao Z, Zhou Z, Lu W, Zhang W, Chen M. irrE, an exogenous gene from Deinococcus radiodurans, improves the growth of and ethanol production by a Zymomonas mobilis strain under ethanol and acid stress [J]. J Microbiol Biotechnol, 2010, 20 (7): 1156-116235 Widiastuti H, Kim JY, Selvarasu S, Karimi IA, Kim H, Seo JS, Lee DY. Genome-scale modeling and in silico analysis of ethanologenic bacteria Zymomonas mobilis [J]. Biotechnol Bioeng, 2011, 108 (3): 655-66536 Kalnenieks U, Galinina N, Strazdina I, Kravale Z, Pickford JL, Rutkis R, Poole RK. NADH dehydrogenase deficiency results in low respiration rate and improved aerobic growth of Zymomonas mobilis [J]. Microbiology, 2008, 154 (Pt 3): 989-99437 Hayashi T, Furuta Y, Furukawa K. Respiration-deficient mutants of Zymomonas mobilis show improved growth and ethanol fermentation under aerobic and high temperature conditions [J]. J Biosci Bioeng, 2011, 111 (4): 414-419"


 SHEN Naikun,ZHAO Hai,GAN Mingzhe,et al.Rapid Ethanol Production from Fresh Sweet Potato by Zymomonas mobilis[J].Chinese Journal of Applied & Environmental Biology,2009,15(02):405.[doi:10.3724/SP.J.1145.2009.00405]
 WANG Guangjun,HE Mingxiong,ZHANG Yizheng.Co-expression of α-amylase and Glucoamylase in Zymomonas mobilis and Direct Ethanol Production from Sweet Potato[J].Chinese Journal of Applied & Environmental Biology,2012,18(02):785.[doi:10.3724/SP.J.1145.2012.00785]
 SHUI Zongxia,WANG Jingli,QIN Han,et al.Construction and preliminary fermentation of succinate-producing recombinant ethanologenic Zymomonas mobilis[J].Chinese Journal of Applied & Environmental Biology,2015,21(02):657.[doi:10.3724/SP.J.1145.2015.02008]
[4]杨依伟,赵彩芳,吴波,等.利用Golden Gate “One-POT”技术组装运动发酵单胞菌转录单元[J].应用与环境生物学报,2019,25(01):170.[doi:10.19675/j.cnki.1006-687x.2018.04043]
 YANG Yiwei,ZHAO Caifang,WU Bo,et al.“One-POT” assembly of Zymomonas mobilis transcription unit via Golden Gate[J].Chinese Journal of Applied & Environmental Biology,2019,25(02):170.[doi:10.19675/j.cnki.1006-687x.2018.04043]


更新日期/Last Update: 2013-05-02