|本期目录/Table of Contents|

[1]王广珺,何明雄,张义正.运动发酵单胞菌共表达α-淀粉酶和葡萄糖淀粉酶发酵甘薯生产乙醇[J].应用与环境生物学报,2012,18(05):785-790.[doi:10.3724/SP.J.1145.2012.00785]
 WANG Guangjun,HE Mingxiong,ZHANG Yizheng.Co-expression of α-amylase and Glucoamylase in Zymomonas mobilis and Direct Ethanol Production from Sweet Potato[J].Chinese Journal of Applied & Environmental Biology,2012,18(05):785-790.[doi:10.3724/SP.J.1145.2012.00785]
点击复制

运动发酵单胞菌共表达α-淀粉酶和葡萄糖淀粉酶发酵甘薯生产乙醇()
分享到:

《应用与环境生物学报》[ISSN:1006-687X/CN:51-1482/Q]

卷:
18卷
期数:
2012年05期
页码:
785-790
栏目:
研究论文
出版日期:
2012-10-25

文章信息/Info

Title:
Co-expression of α-amylase and Glucoamylase in Zymomonas mobilis and Direct Ethanol Production from Sweet Potato
作者:
王广珺何明雄张义正
(四川大学生命科学学院,四川省分子生物学与生物技术重点实验室 成都 610064)
Author(s):
WANG Guangjun HE Mingxiong ZHANG Yizheng
(Sichuan Key Laboratory of Molecular Biology and Biotechnology, College of Life Sciences, Sichuan University, Chengdu 610064, China)
关键词:
运动发酵单胞菌乙醇发酵甘薯α-淀粉酶葡萄糖淀粉酶共表达
Keywords:
Zymomonas mobilis ethanol production sweet potato α-amylase glucoamylase co-expression
分类号:
TK63 : TQ920.1
DOI:
10.3724/SP.J.1145.2012.00785
文献标志码:
A
摘要:
运动发酵单胞菌是乙醇发酵的极佳菌种,但其所能利用的发酵底物范围狭窄,不能利用淀粉作为发酵底物. 为增加其利用底物的范围使其能够水解淀粉,本研究构建了3种表达淀粉酶的运动发酵单胞菌菌株:1)Zymomonas mobilis (pAmyE)表达α-淀粉酶;2)Z. mobilis (pGA)表达葡萄糖淀粉酶;3)Z. mobilis (pAmyGA)共同表达α-淀粉酶和葡萄糖淀粉酶. DNS法测定淀粉酶活显示,每种转化菌株的胞外淀粉酶活性均高于胞内,且两种淀粉酶共表达的酶活高于这两种淀粉酶单独表达的酶活之和,说明这两种淀粉酶能够协同作用降解淀粉. 对于重组菌株Z. mobilis (pAmyGA),约59.3%的淀粉酶活性都在胞外检测到. 用淀粉含量高且耐贮存的徐薯18匀浆加少量葡萄糖作为培养基直接用上述3个菌株发酵生产乙醇. 结果显示,共表达α-淀粉酶和葡萄糖淀粉酶的重组菌株Z. mobilis (pAmyGA)的乙醇产量为54.7 g/L,达到了理论值的83.2%,表明本研究得到了能够直接高效利用淀粉生产乙醇的运动发酵单胞菌的菌株. 图5 表1 参20
Abstract:
The gram-negative bacterium Zymomonas mobilis is one of the best ethanol producers found in nature, however, this ethanologenic bacterium cannot hydrolyze starch abundantly existed in nature because of its narrow spectrum of fermentable carbohydrates. In this research, three genetic recombined strains were constructed to express amylolytic enzymes: (1) α-amylase expressing strain Z. mobilis (pAmyE), (2) glucoamylase expressing strain Z. mobilis (pGA) and (3) α-amylase and glucoamylase co-expressing strain Z. mobilis (pAmyGA). Most of the enzyme activity was detected in the medium, and the enzyme activity of amylolytic enzyme in co-expression strain was higher than the sum of each enzyme expressed individually, suggesting there was combined effect between α-amylase and glucoamylase in the hydrolysis of starch. For recombinant strain Z. mobilis (pAmyGA), 59.5% of the enzyme activity was detected in the extracellular fraction. Using the raw material of sweet potato xushu 18 with high starch content and good storage character and adding 5 g/L of glucose as medium, the direct ethanol production was determined via fermentation of the three recombined Z. mobilis strains. The results revealed that the recombinant Z. mobilis (pAmyGA) exhibited the highest level of ethanol production, 54.7 g/L ethanol in 3.5 days, which was 83.2% of the theoretical yield. Fig 5, Tab 1, Ref 20

参考文献/References:

1 Rogers PL, Jeon YJ, Lee KJ, Lawford HG. Zymomonas mobilis for fuel ethanol and higher value products. Adv Biochem Eng Biotechnol, 2007, 108: 263~288
2 Rogers PL, Lee KJ, Tribe DE. Kineics of alcohol production by Zymomonas mobilis at high sugar concentration. Adv Biochem Eng, 1982, 23: 27~84
3 Swings J, Ley JD. The biology of Zymomonas. Bacterial Rev, 1977, 41 (1): 1~46
4 Bai FW, Anderson WA, Moo-Young M. Ethanol fermentation technologies from sugar and starch feedstocks. Biotech Adv, 2008, 26 (1): 89~105
5 Zhang L, Liu Q, Wang Q. Sweetpotato in China. In: Loebenstein G, Thottappilly G. The Sweetpotato. The Netherland: Springer Dordrecht, 2009. 325~357
6 Reddy OVS, Basappa SC. Direct fermentation of cassava starch to ethanol by mixed cultures of Endomycopsis fibuligera and Zymomonas mobilis: synergism and limitations. Biotechnol Lett,1996, 18 (11): 1315~1318
7 Carlos MA, Guillermo RC, Faustino S, Danley ASC. Production of amylolytic enzymes by Bacillus amyloliquefaciens in pure culture and in co-culture with Zymomonas mobilis. Biotechnol Lett, 1999, 21 (3): 249~252
8 Brestic-Goachet N, Gunasekaran P, Cami B, Baratti J. Transfer and expression of a Bacillus licheniformis α-amylase gene in Zymomonas mobilis. Arch Microbiol, 1990, 153 (3): 219~225
9 Skotnicki ML, Warr RG, Goodman AE, Lee KJ, Rogers PL. High productivity ethanol fermentation using Zymomonas mobilis. Biochem Soc Symp, 1983, 48: 53~86
10 Su P, Delaney SF, Rogers PL. Cloning and expression of a β-glucosidase gene from Xanthomonas albilineans in Escherichia coli and Zymomonas mobilis. J Biotechnol, 1989, 9 (2): 139~152
11 He MX, Feng H, Bai F, Li Y, Liu X, Zhang YZ. Direct production of ethanol from raw sweet potato starch using genetically engineered Zymomonas mobilis. Afr J Microbiol Res, 2009, 3 (11): 721~726
12 Kovach ME, Elzer PH, Hill DS, Robertson GT, Farris MA, Roop RM, Peterson KM. Four new derivatives of the broad-host-range cloning vector pBBR1MCS, carrying different antibiotic-resistance cassettes. Gene, 1995, 166 (1): 175~176
13 Wu GF (吴国峰), Li GQ (李国全), Ma YQ (马永强).工业发酵分析. Beijing: China Light Industry Press (北京: 中国轻工业出版社), 1980
14 Conway T, Osman YA, Konnan JI, Hoffmann EM, Ingram LO. Promoter and nucleotide sequences of the Zymomonas mobilis pyruvate decarboxylase. J Bacteriol, 1987, 169 (3): 949~954
15 Linger JG, Adney WS, Darzins A. Heterologous expression and extracellular secretion of cellulolytic enzymes by Zymomonas mobilis. Appl Environ Microbiol, 2010, 76 (19): 6360~6369
16 Sandkvist M. Biology of type II secretion. Mol Microbiol, 2001, 40 (2): 271~283
17 Fujii M, Homma T, Taniguchi M. Synergism of -amylase and glucoamylase on hydrolysis of native starch granules. Biotechnol Bioeng, 1988, 32 (7): 910~915
18 Tao X (陶向), Zhang YW (张勇为), Jiang YS (姜玉松), Wang HY (王海燕), Zhang YZ (张义正) . Changes in root starch contents of sweet potato cultivars during storage. Chin J Appl Environ Biol (应用与环境生物学报), 2010, 16 (5): 741~744
19 Aggarwal NK, Nigam P, Singh D, Yadav BS. Process optimization for the production of sugar for the bioethanol industry from sorghum, a non-conventional source of starch. World J Microbiol Biotechnol, 2001, 17 (4): 411~415
20 Palmqvist E, Hahn-Hägerdal B. Fermentation of lignocellulosic hydrolysates II: inhibitors and mechanisms of inhibition. Bioresour Technol, 2000, 74 (1): 25~33

相似文献/References:

[1]甘明哲,靳艳玲,周玲玲,等.适合鲜甘薯原料乙醇发酵的低粘度快速糖化预处理[J].应用与环境生物学报,2009,15(02):260.[doi:10.3724/SP.J.1145.2009.00262]
 GAN Mingzhe,JIN Yanlin,et al.Low Viscosity and Rapid Saccharification Pretreatment of Fresh Sweet Potato for Ethanol Production[J].Chinese Journal of Applied & Environmental Biology,2009,15(05):260.[doi:10.3724/SP.J.1145.2009.00262]
[2]柯崇榕,吴毕莎,邵庆伟,等.酿酒酵母PDC1基因过表达菌株的构建[J].应用与环境生物学报,2013,19(04):704.[doi:10.3724/SP.J.1145.2013.00704]
 KE Chongrong,WU Bisha,SHAO Qingwei,et al.Construction of Saccharomyces cescerevisiae Mutant with Overexpression of PDC1 Gene[J].Chinese Journal of Applied & Environmental Biology,2013,19(05):704.[doi:10.3724/SP.J.1145.2013.00704]
[3]任海伟,李金平,张轶,等.白酒丢糟糖化条件的优化及乙醇发酵[J].应用与环境生物学报,2013,19(05):833.[doi:10.3724/SP.J.1145.2013.00833]
 REN Haiwei,LI Jinping,ZHANG Yi,et al.Optimization of Saccharification for Distillers Grains and Ethanol Fermentation[J].Chinese Journal of Applied & Environmental Biology,2013,19(05):833.[doi:10.3724/SP.J.1145.2013.00833]
[4]税宗霞,王景丽,秦晗,等.产丁二酸运动发酵单胞菌的构建和发酵性能[J].应用与环境生物学报,2015,21(04):657.[doi:10.3724/SP.J.1145.2015.02008]
 SHUI Zongxia,WANG Jingli,QIN Han,et al.Construction and preliminary fermentation of succinate-producing recombinant ethanologenic Zymomonas mobilis[J].Chinese Journal of Applied & Environmental Biology,2015,21(05):657.[doi:10.3724/SP.J.1145.2015.02008]
[5]杨依伟,赵彩芳,吴波,等.利用Golden Gate “One-POT”技术组装运动发酵单胞菌转录单元[J].应用与环境生物学报,2019,25(01):170.[doi:10.19675/j.cnki.1006-687x.2018.04043]
 YANG Yiwei,ZHAO Caifang,WU Bo,et al.“One-POT” assembly of Zymomonas mobilis transcription unit via Golden Gate[J].Chinese Journal of Applied & Environmental Biology,2019,25(05):170.[doi:10.19675/j.cnki.1006-687x.2018.04043]
[6]申乃坤,赵海,甘明哲,等.鲜甘薯原料的运动发酵单胞菌快速乙醇发酵条件[J].应用与环境生物学报,2009,15(03):405.[doi:10.3724/SP.J.1145.2009.00405]
 SHEN Naikun,ZHAO Hai,GAN Mingzhe,et al.Rapid Ethanol Production from Fresh Sweet Potato by Zymomonas mobilis[J].Chinese Journal of Applied & Environmental Biology,2009,15(05):405.[doi:10.3724/SP.J.1145.2009.00405]
[7]吴波,何明雄,冯红,等.运动发酵单胞菌限制-修饰系统缺失突变株的构建及其性质分析[英文][J].应用与环境生物学报,2013,19(02):189.[doi:10.3724/SP.J.1145.2013.00189]
 WU Bo,HE Mingxiong,FENG Hong,et al.Construction and Characterization of Restriction-Modification Deficient Mutants in Zymomonas mobilis ZM4[J].Chinese Journal of Applied & Environmental Biology,2013,19(05):189.[doi:10.3724/SP.J.1145.2013.00189]

备注/Memo

备注/Memo:
国家自然科学基金项目(No. 30871344)和国家科技部支撑计划项目(No. 2007BAD78B04)资助
更新日期/Last Update: 2012-10-26