|本期目录/Table of Contents|

[1]蔡晓布,彭岳林.高寒草原菌根围细菌数量对丛枝菌根真菌物种多样性的影响[J].应用与环境生物学报,2011,17(04):473-479.[doi:10.3724/SP.J.1145.2011.00473]
 CAI Xiaobu,PENG Yuelin.Influence of Bacterial Quantitiy in Mycorrhizosphere on Species Diversity of Arbuscular Mycorrhizal Fungi in an Alpine Grassland on the Tibetan Plateau[J].Chinese Journal of Applied & Environmental Biology,2011,17(04):473-479.[doi:10.3724/SP.J.1145.2011.00473]
点击复制

高寒草原菌根围细菌数量对丛枝菌根真菌物种多样性的影响()
分享到:

《应用与环境生物学报》[ISSN:1006-687X/CN:51-1482/Q]

卷:
17卷
期数:
2011年04期
页码:
473-479
栏目:
研究论文
出版日期:
2011-08-25

文章信息/Info

Title:
Influence of Bacterial Quantitiy in Mycorrhizosphere on Species Diversity of Arbuscular Mycorrhizal Fungi in an Alpine Grassland on the Tibetan Plateau
作者:
蔡晓布彭岳林
(1中国农业大学资源与环境学院 北京 100094)
(2西藏农牧学院资源与环境学院 林芝 860000)
Author(s):
CAI Xiaobu PENG Yuelin
(1College of Resources and Environment, China Agricultural University, Beijing 100094, China)
(2Department of Resources and Environment, Tibet Agricultural and Animal Husbandry College, Linzhi 860000, Tibet, China)
关键词:
菌根围细菌数量AMF物种多样性西藏高寒草原
Keywords:
mycorrhizosphere bacterial number arbuscular mycorrhizal fungi species diversity Tibet alpine steppe
分类号:
S154.36 : Q948.122.3
DOI:
10.3724/SP.J.1145.2011.00473
文献标志码:
A
摘要:
基于丛枝菌根真菌(Arbuscular mycorrhizas fungi,AMF)孢子形态学鉴定,研究了藏北高寒草原主要建群植物菌根围细菌数量对AMF物种多样性的影响. 结果表明:1)细菌数量1.02×106 ~ 2.96×106、3.01×106 ~ 6.06×106个/g范围内,Glomus、Acaulospora均为优势属,Scutellospora则均为最常见属;AMF孢子密度、分离频度、相对多度、重要值和种的丰度(SN、SR)均呈Glomus>Acaulospora>Scutellospora属的趋势. 2)细菌数量较低时(<3.0×106个/g),AMF各属孢子密度、种的丰度(SR)相对较高,Shannon-Weiner指数、物种均匀度指数亦较高,分别达1.774和0.127. 3)不同细菌数量条件下,孢子密度随细菌数量的增加而均呈微弱下降,菌根侵染率、侵染强度、丛枝丰度则均呈不同程度的提高. 细菌数量>3.0×106个/g时,菌根侵染率、侵染强度和丛枝丰度随细菌数量增加而提高的趋势尤为明显. 4)不同细菌数量条件下,AMF种的构成呈共有种、共有优势种较多(Glomus属均占绝对比重),特有种、稀有种较少,以及不同优势种孢子密度、相对多度和重要值差异均较悬殊的分布特征. 图6 表3 参25
Abstract:
Based on spore identification, the influence of bacterial quantity in mycorrhizosphere of dominant grasses on species diversity of arbuscular mycorrhizal fungi (AMF) was investigated in an alpine grassland on North Tibetan Plateau. The results indicated that: 1) When the bacterial number was in the range of 1.02 × 106 to 2.96 × 106 and 3.01 × 106 to 6.06 × 106 g-1, Glomus and Acaulospora were the dominant genera and Scutellospora was the common genera. The spore density, isolation frequency, relative abundance, importance value and species richness (SN, SR) of AMF showed the similar trend of Glomus > Acaulospora > Scutellospora. 2) When the bacterial number was below 3.0 × 106 g-1, spore density of each AMF genus and species richness (SR) were relatively high. The Shannon-Weiner index and species evenness index were 1.774 and 0.127, respectively. 3) The spore density of AMF declined slightly with the increase of bacterial number, whereas the root infection rate, infection intensity and arbuscule richness of AMF tended to increase. The effect was remarkable when the bacterial number was over 3.0 × 106 g-1. 4) Regardless of bacterial number, the species of AMF was mainly composed of common species and dominant species (Glomus was the main genus), and rare species and unique species were less reported. Spore density, relative abundance and importance value differed greatly among different genera of AMF. Fig 6, Tab 3, Ref 25

参考文献/References:

1 Li XL (李晓林), Feng G (冯固). Arbuscular Mycorrhizal Ecology and Physiology. Beijing, China: Huawen Press (北京: 华文出版社), 2001. 1~124, 204~265
2 Liu RJ (刘润进), Li XL (李晓林). Arbuscular Mycorrhizal and Application. Beijing, China: Science Press (北京: 科学出版社), 2000. 1~169
3 Li Xl (李晓林), Bi Yl (毕银丽), Feng G (冯固). Arbuscular mycorrhizal and plant nutrition. In: Feng F (冯锋), Zhang FS (张福锁), Yang XQ (杨新泉) eds. Research and Progress in Plant Nutrition. Beijing, China: China Agricultural University Press (北京: 中国农业大学出版社), 2000. 82~93
4 Biró B, Köves-Péchy K, Vörös I, Takács T, Eggenberger P, Strasser R J. Interrelations between azospirillum and rhizobium nitrogen-fixers and arbuscular mycorrhizal fungi in the rhizosphere of alfalfa in sterile, AMF-free or normal soil conditions. Appl Soil Ecol, 2000, 15 (2): 159~168
5 Vivas A, Voros I, Biro B, Campos E, Barea J M, Azcon R. Symbiotic sfficiency of autochthonous arbuscular mycorrhizal fungus (G. mosseae) and Brevibacillus sp. isolated from cadmium polluted soil under increasing cadmium levels. Environ Poll, 2003, 126 (2): 179~189
6 Mamatha G, Linderman RG, Jaganath S. Inoculation of fieldestablished mulberry and papaya with arbuscular mycorrhizal fungi and a mycorrhiza helper bacterium. Mycorrhiza, 2002, 12 (2): 313~316
7 Duponnois R, Plenchette C. A mycorrhiza helper bacterium enhances ectomycorrhizal and endomycorrhizal symbiosis of Australian Acacia species. Mycorrhiza, 2003, 13 (2): 85~91
8 Requena N, Jimenez I, Toro M, Barea J M. Interactions between plant-growth promoting rhizobacteria (PGPR), arbuscular mycorrhizal fungi and Rhizobium spp. in the rhizosphere of Anthyllis cytisoides, a model legume for revegetation in Mediterranean sem-arid ecosystems. New Phytol, 1997, 136: 667~677
9 Amora-Lazcano E, Vazquez M M, Azcon R. Response of nitrogen-trsansforming microorganisms to arbuscular mycorrhizal fungi. Biol Fertil Soils, 1998, 27: 65~70
10 Hijri M, Redecker D, Petetot JAM-C, Voigt K, Wöstemeyer J, Sanders I R. Identification and isolation of two ascomycete fungi from spores of the arbuscular mycorrhizal fungus Scutellospora castanea. Appl & Environ Microbiol, 2002, 68 (9): 4567~4573
11 Xavier LJC, Germida JJ. Bacteria associated with Glomus clarum spores influence mycorrhizal activity. Soil Biol & Biochem, 2003, 35: 471~478
12 Artusson V, Finlay RD, Jansson JK. Interactions between arbuscular mycorrhizal fungi and bacteria and their potential for stimulating plant growth. Environ Microbiol, 2006, 8 (1): 1~10
13 Long WW (龙伟文), Wang P (王平), Feng XM (冯新梅), Li FD (李阜棣). Interactions between Pseudomonas fluoresens X16L2 and arbuscular mycorrhizal fungus (AMF) Glomus mosseae in the wheal rhizosphere. Acta Pedol Sin, 2000, 37 (3): 410~418
14 Roesti D, Ineichen K, Braissant O, Redecker D, Wiemken A, Aragno M. Bacteria associated with spores of the arbuscular mycorrhizal fungi Glomus geosporum and Glomus constrictum. Appl & Environ Microbiol, 2005, 71 (11): 6673~6679
15 Wang WW (王卫卫), Fu B (付博), Xiong BT (熊本涛), Tang M (唐明), Chen XD (陈兴都). Plant growth promoting and its mechanism of hydrogen-oxidizing bacteria isolated from Medicago sativa rhizosphere. Chin Sci Bull (科学通报), 2010, 55 (17): 1690~1695
16 Land Administrative Office of Tibet. Tibet Grassland Resource. Beijing, China: Science Press (北京: 科学出版社), 1994: 6~157
17 Schenck NC, Péréz Y. Manual for identification of Vesicular-Arbuscular mycorrhizal fungi. 2nd ed. Gainesville, USA: INVAM University of Florida, 1988. 1~137
18 Trouvelot A, Kough JL, Gianiazzi-Pcarson V. Measurement of VA mycorrhiza system. Methods of the estimation of its function. In: Gianiazzi-Pearson V, Gianiazzi S eds. Physiological and Genetical Aspects of Mycorrhizae. Paris: INRA Press: 1986. 217~221.
19 Institute of Soil Science, Chinese Academy of Sciences. Research Method of Soil Microbial. Beijing, China: Science Press (北京: 科学出版社), 1985. 40~72
20 Artursson V, Finlay RD, Jansson JK. Combined bromodeoxyuridine immunocapture and terminal restriction fragment lenth polymorphism analysis highlights differences in the active soil bacterial metagenome due to Glomus mosseae inoculation or plant species. Environ Microbiol, 2005, 7 (12): 1952~1966
21 Bianciotto V, Bonfante P. Arbuscular mycorrhizal fungi: A specialized niche for rhizospheric and endocellular bacteria. Antonie Van Leeuwenhoek, 2002, 81 (1~4): 365~371
22 Bianciotto V, Perotto S, Ruiz-Lozano J M, Bonfante P. Arbuscular mycorrhizal fungi and soil bacteria: From cellular investigations to biotechnological perspectives. In: Gianinazzi S, Schuepp H, Barea JM, Haselwandter K eds. Mycorrhizal Technology in Agriculture: From Genes to Bioproducts. Basel, Switzerland: Birkh user Verlag, 2002. 19~31
23 Barea JM, Toro M, Orozco MO, Campos E, Azcón R. The application of isotopic 32P and 15N-dilution techniques to evaluate the interactive effect of phosphate-solubilizing rhizobacteria, mycorrhizal fungi and Rhizobium to improve the agronomic efficiency of rock phosphate for legume crops. Nutr Cycling Agroecosyst, 2002, 63 (1): 35~42
24 Bianciotto V, Andreotti S, Balestrini R, Bonfante P, Perotto S. Mucoid mutants of the biocontrol strain Pseudomonus fluorescens CHAO show increased ability in biofilm formation on mycorrhizal and nonmycorrhizal carrot roots. Mol Plant-Microbe Interact, 2001, 14 (2): 255~260
25 Marschner H. Mineral Nutrition of Higher Plants. 2nd ed. Cambridge, UK: Academic Press, Harcourt Brace & Company, 1995. 566~595

相似文献/References:

[1]宗虎民,马德毅,王菊英,等.氟苯尼考对海洋沉积物微生物活动的影响[J].应用与环境生物学报,2008,14(03):408.
 ZONG Humin,et al..Effects of Florfenicol on Microbial Activity in Marine Sediment[J].Chinese Journal of Applied & Environmental Biology,2008,14(04):408.

备注/Memo

备注/Memo:
国家自然科学基金项目(No. 40761015,30260055)和国家科技支撑计划重大项目(No. 2007BAC06B04)资助
更新日期/Last Update: 2011-08-16