|本期目录/Table of Contents|

[1]李嗣新,汪红军,周连凤,等.流域水体污染的生态学效应及监测预警[J].应用与环境生物学报,2011,17(02):268-272.[doi:10.3724/SP.J.1145.2011.00268]
 LI Sixin,WANG Hongjun,ZHOU Lianfeng,et al.Ecological Effect, Monitoring and Warning of Water Pollution in Drainage Basin[J].Chinese Journal of Applied & Environmental Biology,2011,17(02):268-272.[doi:10.3724/SP.J.1145.2011.00268]
点击复制

流域水体污染的生态学效应及监测预警()
分享到:

《应用与环境生物学报》[ISSN:1006-687X/CN:51-1482/Q]

卷:
17卷
期数:
2011年02期
页码:
268-272
栏目:
综述
出版日期:
2011-04-25

文章信息/Info

Title:
Ecological Effect, Monitoring and Warning of Water Pollution in Drainage Basin
作者:
李嗣新 汪红军 周连凤 胡俊 梁友光
(水利部中国科学院水工程生态研究所 武汉 430079)
Author(s):
LI Sixin WANG Hongjun ZHOU Lianfeng HU Jun LIANG Youguang
(Institute of Hydroecology, Ministry of Water Resources & Chinese Academy of Sciences, Wuhan 430079, China)
关键词:
生态效应水污染监测预警
Keywords:
ecological effect water pollution monitoring warning
分类号:
X171.5
DOI:
10.3724/SP.J.1145.2011.00268
文献标志码:
A
摘要:
从流域生态系统的结构与功能出发,分述流域水体污染引起的生态学效应(结构与功能效应),并归纳目前国内外生物、生态监测预警的特点. 生态监测经历了以敏感和耐污种类比例为主的传统简单指数、以群落结构变化为主的单一指数到以群落结构、营养结构为主要特征的复合多参数指数的发展过程. 生物预警利用在线生物监测技术,主要形成了鱼类、无脊椎动物和微生物的三大类生物预警系统. 目前,生物完整性指数能从群落水平较好地指示水体污染状况,生态预警则缺乏生态系统水平的研究. 因此提出以群落结构为主的生态监测以及生态系统整体水平上的生态预警是未来研究方向的重点. 表2 参57
Abstract:
Based on the watershed ecosystem structure and function, the ecological effects (structural and functional effects) caused by water pollution were described, respectively, and the features of biological, ecological monitoring and warning were also summarized. Ecological monitoring was developed by traditional and simple index (ratio of sensitive and tolerance species), one single index (community structure) and multiple indexes (community and trophic structure). Biological warning system using online biomonitoring technology was divided into three classes (fish, invertebrate and microorganism). At present, index of biotic integrity can indicate water pollution better at community level. However, few studies focus on ecosystem-level warning. In this paper, ecological monitoring and warning based on community structure and the whole ecosystem level is proposed as the focus of future research direction. Tab 2, Ref 57

参考文献/References:

1 Ministry of Environmental Protection of the People’s Republic of China (中华人民共和国环境保护部). The state of environment in China in 2008. China Environ News (中国环境报), 2009-6-4 (1)
2 Ministry of Environmental Protection of the People’s Republic of China (中华人民共和国环境保护部). The state of environment in China in 2009. China Environment News (中国环境报), 2010-6-3 (1)
3 Cooke AS. Shell thinning in avian eggs by environmental pollutants. Environ Pollut, 1973, 4: 85~152
4 Cooke AS. Egg shell characteristics of gannets Sula bassana, shags Phalacrocorax aristotelis and great black-backed gulls Larus marinus exposed to DDE and other environmental pollutants. Environ Pollut, 1979, 19: 47~65
5 Eto K. Pathology of Minamata disease. Toxicol Pathol, 1997, 25: 614~623
6 Cemagref. Etude des méthods biologiques quantitatives d’appréciation de la qualité des eaux. Rapport Division Qualite des Eaux Lyon - A.F. Bassin Rhône-Méditerranée-Corse, Pierre-Bénite, France, 1982. 218
7 Coste M, Ayphassorho H. Etude de la qualité des eaux du bassin Artois Picardie à l’aide des communautés de diatomées benthiques (Application des indices diatomiques). Rapport Cemagref Bordeaux - Agence de l’Eau Artois Picardie, 1991.227
8 Kelly MG, Whitton BA. The Trophic Diatom Index: A new index for monitoring eutrophication in rivers. J Appl Phycol, 1995, 7: 433~444
9 Hill BH, Herlihy AT, Kaufmann PR, Stevenson RJ, McCormick FH, Burch Johnson C. Use of periphyton assemblage data as an index of biotic integrity. J N Am Benthol Soc, 2000, 19 (1): 50~67
10 Wright JF, Moss D, Armitage PD, Furse MT. A preliminary classification of running-water sites in Great Britain based on macroinvertebrate species and the prediction of community type using environmental data. Freshwater Biol, 1984, 14: 221~256
11 Chutter FM. Research on the rapid biological assessment of water quality impacts in streams and rivers. WRC Report No 422/1/98, Pretoria, South Africa, 1998
12 Kerans BL, Karr JR. A benthic index of biotic integrity (B-IBI) for rivers of the Tennessee Valley. Ecol Appl, 1994, 4: 768~785
13 Pavluk TI, Bij de Vaate A, Leslie HA. Development of an index of trophic completeness for benthic macroinvertebrate communities in flowing waters. Hydrobiologia, 2000, 427: 135~141
14 Ohio Environmental Protection Agency. Addendum to biological criteria for the protection of aquatic life: Volume II. Users manual for biological field assessment of Ohio surface waters. Division of Water Quality Monitoring and Assessment, Columbus, Ohio, USA, 1989
15 Hilsenhoff WL. An improved biotic index of organic stream pollution. Great Lakes Entomol, 1987, 20: 31~39
16 Karr JR. Assessment of biotic integrity using fish communities. Fisheries, 1981, 6: 21~27
17 Kleynhans CJ. The development of a fish index to assess the biological integrity of South African rivers. Water SA, 1999, 25 (3): 265~278
18 Kentucky Division of Water. Reference reach fish community report. Kentucky Department for Environmental Protection, Division of Water, Frankfort, Kentucky, USA, 1997
19 Fausch KD, Lyons J, Karr JR, Angermeier PL. Fish communities as indicators of environmental degradation. In: Adams SM ed. Biological Indicator of Stress in Fish. Bethesda, Maryland, USA: American Fisheries Society Symposium, 1990. 123~144
20 Zhu D, Chang J. Annual variations of biotic integrity in the upper Yangtze River using an adapted index of biotic integrity (IBI). Ecol Indic, 2008, 8: 564~572
21 Cairns J, Jr, Gruber D, Dickson KL, Hendricks AC, van der Schalie WH. Developing an on-site continuous biological monitoring system for the chemical industry. In: Delpino L, Krigman A eds. Proceedings of the Fifth Annual Industrial Pollution Conference. McLean, USA: Water and Wastewater Manufacture Association, 1977. 285~294
22 Morgan WSG. Biomonitoring with fish: An aid to industrial effluent and surface water quality control. Prog. Water Technol, 1977, 9: 703~711
23 Slooff W. Detection limits of a biological monitoring system based on fish respiration. B Environ Contam Tox, 1979, 23: 517~523
24 Gruber D, Diamond J, Johnson D. Performance and validation of an on-line fish ventilatory early warning system. In: Suter GW, Lewis MA eds. Aquatic Toxicology and Environmental Fate. Philadelphia, USA: American Society for Testing and Materials, 1989. 215~230
25 Baldwin IG, Harman MMI, Neville DA. Performance characteristics of a fish monitor for detection of toxic substances. Water Res, 1994, 28: 2191~2199
26 Johnston NAL, Campagna VS, Hawkins PR, Banens RJ. Response of the eastern rainbowfish (Melanotaenia duboulayi) to toxic Microcystis aeruginosa. Aust J Mar Freshwat Res, 1994, 45: 917~923
27 Laitinen M, Siddall R, Valtonen ET. Bioelectronic monitoring of parasite-induced stress in brown trout and roach. J Fish Biol, 1996, 48: 228~241
28 Van der Schalie WH, Shedd TR, Knechtges PL, Widder MW. Using higher organisms in biological early warning systems for real-time toxicity detection. Biosens & Bioelectron, 2001, 16: 457~465
29 Gerhardt A, de Bisthoven LJ, Soares AMVM. Evidence for the Stepwise Stress Model: Gambusia holbrooki and Daphnia magna under acid mine drainage and acidified reference water stress. Environ Sci Technol, 2005, 39: 4150~4158
30 Hendriks AJ, Stouten MDA. Monitoring the response of microcontaminants by dynamic Daphnia magna and Leuciscus idus assays in the Rhine delta: Biological early warning as a useful supplement. Ecotox Environ Safe, 26: 265~279
31 van Hoof F, Sluyts H, Paulussen J, Berckmans D, Bloemen H. Evaluation of a Bio-monitor based on the phototactic behaviour of Daphnia magna using infrared detection and digital image processing. Water Sci Technol, 1994, 30: 79~86
32 Gerhardt A, Carlsson A, Resseman C, Stich KP. New online biomonitoring system for Gammarus pulex (Crustacea): in situ test below a copper effluent in south Sweden. Environ Sci Technol, 1998, 32: 150~156
33 Sloof W, de Zwart D, Marquenie JM. Detection limits of a biological monitoring system for chemical water pollution based on mussel activity. B Environ Contam Tox, 1983, 30: 400~405
34 Kramer KJM, Jenner HA, de Zwart D. The valve movement response of mussels: a tool in biological monitoring. Hydrobiologia, 1989, 188~189: 433~443
35 Jenner HA, van Aerssen GHTM, Terwoert J. Valve movement response of the mussel Dreissena polyrnorpha and the clam Unio pictorum for use in an Early Warning System. In Neumann D, Jenner HA eds. The Zebra Mussel, Stuttgart, Germany: Gustav Fischer Verlag, 1992. 115~126
36 Borcherding J. The “Dreissena-Monitor” - improved evaluation of dynamic limits for the establishment of alarm-thresholds during toxicity tests and for continuous water control. In: Hill IR, Heimbach F eds. Freshwater Field Tests for Hazard Assessment of Chemicals. Boca Raton, USA: Lewis Publishers, 1994. 477~484
37 Sluyts H, van Hoof F, Cornet A, Paulussen J. A dynamic new alarm system for use in biological early warning systems. Environ Toxicol Chem, 1996, 15: 1317~1323
38 Borcherding J, Jantz B. Valve movement response of the mussel Dreissena polymorpha - the influence of pH and turbidity on the acute toxicity of pentachlorophenol under laboratory and field conditions. Ecotoxicology, 1997, 6: 153~165
39 de Zwart D, Kramer KJM, Jenner HA. Practical experiences with the biological early warning system “mosselmonitor”. Environ Toxicol Water Qual, 2006, 10: 237~247
40 Leynena M, Van den Berckta T, Aertsb JM, Casteleinb B, Berckmansb D, Ollevier F. The use of Tubificidae in a biological early warning system. Environ Pollut, 1999, 105: 151~154
41 Kramer KJM, Botterweg J. Aquatic biological early warning systems: an overview. In: Jeffrey, DJ, Madden B eds. Bioindicators and Environmental Management. London, UK: Academic Press, 1991. 95~126
42 van Hoof F, De Jonghe EG, Briers MG, Hansen PD, Pluta HJ, Rawson DM, Wilmer AJ. The evaluation of bacterial biosensors for screening of water pollutants. Environ Toxicol Water Qual, 1992, 7: 19~33
43 Benitez L, Martin-Gonzales A, Gilardi P, Soto T, Rodiguez de Lecea J, Gutierrez JC. The ciliated protozoa Tetrahymena thermophila as a biosensor to detect mycotoxins. Lett Appl Microbiol, 1994, 19: 489~491
44 Benecke G, Falke W, Schmidt C. Use of algal fluorescence for an automated biological monitoring system. B Environ Contam Tox, 1982, 28: 385~395
45 Twist H, Edwards AC, Codd GA. A novel in-situ biomonitor using alginate immobilized algae (Scenedesmus subspicatus) for the assessment of eutrophication in flowing surface waters. Water Res, 1997, 31: 2066~2072
46 Naessens M, Tran-Minh C. Whole-cell biosensor for direct determination of solvent vapours. Biosens & Bioelectron, 1998, 13: 341~346
47 Koeman JH, Poels CLM, Sloof W. Continuous biomonitoring systems for detection of toxic levels of water pollutants. In: Lelyveld IH, Zoeteman BCJ eds. Aquatic pollutants, transformation and biological effects. New York, USA: Pergamon Press, 1978. 339~347
48 Scharf BW. A fish test alarm device for the continual recording of acute toxic substances in water. Arch Hydrobiol, 1979, 85: 250~256
49 Evans GP, Wallwork JF. The WRc fish biomonitor and other biomonitoring methods. In: Gruber DS, Diamond JM eds. Automated Biomonitoring: Living Sensors as Environmental Monitors. Chichester, USA: Ellis Horwood, 1999. 75~90
50 Hendriks AJ, Stouten MDA. Monitoring the response of microcontaminants by dynamic Daphnia magna and Leuciscus idus assays in the Rhine delta: Biological early warning as a useful supplement. Ecotox Environ Safe, 1993, 26: 265~279
51 Gerhardt A. Recent trends in online biomonitoring for water quality control. In: Gerhardt A [ed]. Biomonitoring of polluted water. Trans Utikon-Zurich, Switzerland: Tech Publications, 1999. 95~118
52 Morgan WSG, Kuhn PC, Allais B, Wallis G. An appraisal of the performance of a continuous automatic fish biomonitoring system at an industrial site. Water Sci Technol, 1982, 14: 151~161
53 Biomonitoring Committee, Working Group of the Federal States on Water Problems. Recommendation on the deployment of continuous biomonitors for the monitoring of surface waters. Berlin, Germany: Kulturbuchverlag Berlin GmbH, 1996
54 Smith EH, Bailey HC. Development of a system for continuous biomonitoring of a domestic water resource for early warning of contaminants. In: Gruber DS, Diamond JM eds. Automated Biomonitoring: Living Sensors as Environmental Monitors. Chichester, USA: Ellis Horwood, 1988. 157~171
55 United States Environmental Protection Agency. Framework for Ecological Risk Assessment. Washington, DC, USA: Risk Assessment Forum, 1992
56 United States Environmental Protection Agency. Ecological risk assessment guidance propose. Environ Sci Technol, 1996, 30 (11): 472~473
57 United States Environmental Protection Agency. Guidelines for Ecological Risk Assessment. Washington, DC, USA: Risk Assessment Forum, 1998

相似文献/References:

[1]黄玉瑶,高玉荣,任淑智,等.模型池塘生态系统设计与应用研究[J].应用与环境生物学报,1995,1(02):103.
 Huang Yuyao,Gao Yurong,Ren Shuzhi,et al.DESIGN AND APPLICATION OF MODEL POND ECOSYSTEMS[J].Chinese Journal of Applied & Environmental Biology,1995,1(02):103.
[2]高玉荣,黄玉瑶,曹宏,等.单甲脒农药对模型池塘生态系统藻类群落结构的影响[J].应用与环境生物学报,1995,1(03):209.
 Gao Yurong,Huang Yuyao,Cao Hong,et al.EFFECT OF MONOFORMAMIDINE INSECTICIDE ON ALGAL COMMUNITY STRUCTURE IN MODEL POND ECOSYSTEMS[J].Chinese Journal of Applied & Environmental Biology,1995,1(02):209.
[3]彭少麟.中国南亚热带退化生态系统的恢复及其生态效应[J].应用与环境生物学报,1995,1(04):403.
 Peng Shaolin.REHABILITATION OF THE DEGRADED ECOSYSTEM AND ITS ECOLOGICAL EFFECT IN SOUTH CHIVA’S SUBTROPICAL REGION[J].Chinese Journal of Applied & Environmental Biology,1995,1(02):403.
[4]贺达汉,郑哲民.草原不同沙化地段蝗虫与植物群落多样性的变化及相互关系的数值分析[J].应用与环境生物学报,1997,3(01):6.
 He Dahan,Zheng Zhemin.MATHEMATICAL ANALYSIS OF THE CHANGES IN GRASSHOPPER AND PLANT COMMUNITY DIVERSITIES AND THE RELATIONSHIPS BETWEEN HEM IN THE DESERTIFICATION OF STEPPE[J].Chinese Journal of Applied & Environmental Biology,1997,3(02):6.

备注/Memo

备注/Memo:
国家水体污染控制与治理科技重大专项(No. 2009ZX07528-003-03)和水利部公益性行业科研专项经费项目(No. 201101001)资助
更新日期/Last Update: 2011-04-25