|本期目录/Table of Contents|

[1]何明雄,张艳,胡启春,等.竹子生物质废弃物前处理技术比较研究[J].应用与环境生物学报,2011,17(02):232-236.[doi:10.3724/SP.J.1145.2011.00232]
 HE Mingxiong,ZHANG Yan,HU Qichun,et al.Comparison of Different Pretreatment Methods for Bamboo Residues[J].Chinese Journal of Applied & Environmental Biology,2011,17(02):232-236.[doi:10.3724/SP.J.1145.2011.00232]
点击复制

竹子生物质废弃物前处理技术比较研究()
分享到:

《应用与环境生物学报》[ISSN:1006-687X/CN:51-1482/Q]

卷:
17卷
期数:
2011年02期
页码:
232-236
栏目:
研究论文
出版日期:
2011-04-25

文章信息/Info

Title:
Comparison of Different Pretreatment Methods for Bamboo Residues
作者:
何明雄 张艳 胡启春 胡国全 祝其丽 潘科 李青
(1农业部沼气科学研究所生物质能技术研究中心 成都 610041)
(2农业部能源微生物与利用重点开放实验室 成都 610041)
(3四川大学生命科学院,生物资源与生态环境教育部重点实验室 成都 610064)
Author(s):
HE Mingxiong ZHANG Yan HU Qichun HU Guoquan ZHU Qili PAN Ke LI Qing
(1Research Centre of Biomass Energy Technology, Biogas Institute of Ministry of Agriculture, Chengdu 610041, China)
(2Key Laboratory of Energy Microbiology and Application of Ministry of Agriculture, Chengdu 610041, China)
(3Key Laboratory of Bio-resources and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610064, China)
关键词:
竹子废弃物笋壳竹叶(茎)玉米秸秆前处理技术生物质能源
Keywords:
bamboo residues bamboo shoot shell fiber bamboo stem and leaf corn stalk pretreatment bioenergy
分类号:
TK6 : X72
DOI:
10.3724/SP.J.1145.2011.00232
文献标志码:
A
摘要:
为开发高效、低成本的预处理技术,促进竹子生物质及其废弃物资源的能源化利用,采用3种不同纤维素预处理方法分别对竹子生物质废弃物——笋壳和竹叶(茎)进行比较研究,同时与玉米秸秆相比较. 结果表明,在稀H2SO4–酶解工艺、浓H3PO4–酶解工艺和NaOH–酶解工艺条件下,几种样品水解液中分别存在3、4和5种糖类组分. 在稀H2SO4–酶解工艺中,木糖为主要成分,其次为葡萄糖;在浓H3PO4–酶解工艺中,葡萄糖为主要成分,其次为木糖;而在NaOH–酶解工艺,葡萄糖和木糖含量基本相当. 同时对样品处理前后的表面结构变化分析表明,不同处理工艺均改变了竹叶(茎)、笋壳和秸秆等样品的表面结构,其结构更为松散,从而有利于纤维素的酶解. 图4 表4 参18
Abstract:
Higher-efficiency and lower-cost pretreatment methods for bamboo and its residues are important in energy utilization. In this study, two kinds of bamboo residues (bamboo shoot shell) fiber and bamboo stem and leaf were pretreated by three methods, and the treatments were compared with those for corn stalk. The results indiciated that 3, 4 and 5 kinds of sugar existed in the hydrolyzates under the different pretreatments, that is, H2SO4-cellulase, H3PO4-cellulase and NaOH-cellulase technologies, respectively. With the H2SO4-cellulase pretreatment technology, xylose was the main component, and then glucose. Using the H3PO4-cellulase technology, glucose was the main component, and then xylose. However, glucose and xylose were found at the nearly same concentration in the treatment with NaOH-cellulase technology. On the other hand, the surface structure of bamboo biomass samples was changed and became much more soft after pretreated by those technologies, which were more easy to be treated by cellulase. This study provides a way for bioenergy production from bamboo residues and other lignocellulose resources. Fig 4, Tab 4, Ref 18

参考文献/References:

1 Margeot A, Hahn-Hagerdal Br, Edlund M, Slade R, Monot Fdr. New improvements for lignocellulosic ethanol. Curr Opin Biotech, 2009, 20: 372~380
2 Li K (李科), Jin YL (靳艳玲), Gan MZ (甘明哲), Liu XF (刘晓风), Zhao H (赵海). Progress in research of key techniques for ethanol production from lignocellulose. Chin J Appl Environ Biol (应用与环境生物学报), 2008, 14 (6): 877~884
3 Sun XY (孙宪昀), Qu YB (曲音波), Liu ZY (刘自勇). Progress in research of lignocellulose degrading enzymes from Penicillium. Chin J Appl Environ Biol (应用与环境生物学报), 2007, 13 (5): 736~740
4 He MX (何明雄), Zhu QL (祝其丽), Pan K (潘科), Hu QC (胡启春). Progress in ethanol production from lignocellulosic biomass by using different recombinant strains. Chin J Appl Environ Biol (应用与环境生物学报), 2009, 15: 579~584
5 Chen HZ (陈洪章) ed in chief. 秸秆资源生态高质化理论与应用. Beijing, China: Chemical Industry Press (北京: 化学工业出版社), 2006
6 G. O. Ogawa Masami IUNU. Ethanol production from the water hyacinth Eichhornia crassipes by yeast isolated from various hydrospheres. Afr J Microbiol Res, 2008, 2: 110~113
7 Balat M, Balat H. Recent trends in global production and utilization of bio-ethanol fuel. Appl Energy, 2009, 86: 2273~2286
8 M. R. Schmer KPV, R. B. Mitchell, R. K. Perrin. Net energy of cellulosic ethanol from switchgrass. Proc Natl Acad Sci USA, 2008, 105: 464~469
9 Scurlock JMO, Dayton DC, Hames B. Bamboo: An overlooked biomass resource? Biomass Bioenerg, 2000, 19: 229~244
10 Tsuda M, Aoyama M, Cho NS. Catalyzed steaming as pre-treatment for the enzymatic hydrolysis of bamboo grass culms. Bioresour Technol, 1998, 64: 241~243
11 Kobayashi F, Take H, Asada C, Nakamura Y. Methane production from steam-exploded bamboo. J Biosci Bioeng, 2004, 97: 426~428
12 Hames B, Ruiz R, Scarlata C, Sluiter A, Sluiter J, Templeton D. Preparation of Samples for Compositional Analysis. NREL-LAP. 2005
13 Liu SC (刘书钗). Analysis and Measurement in Papermaking Industry. Beijing, China: Chemical Industry Press (北京: 化学工业出版社), 2004. 17~30
14 Ehrman T. Standard Test Method for Moisture, Total Solids, and Total Dissolved Solids in Biomass Slurry and Liquid Process Samples. NREL-LAP012. 1994
15 Zhang YHP, Ding SY, Mielenz JR, Cui JB, Elander RT, Laser M, Himmel ME, McMillan JR, Lynd LR. Fractionating recalcitrant lignocellulose at modest reaction conditions. Biotechnol & Bioengin, 2007, 97: 214~223
16 Liu C, Charles EW. Partial flow of compressed-hot water through corn stover to enhance hemicellulose sugar recovery and enzymatic digestibility of cellulose. Biores Technol, 2005, 96: 1978~1985
17 Chapple C, Ladisch M, Meilan R. Loosening lignin’s grip on biofuel production. Nat Biotechnol, 2007, 25: 746~748
18 Eggeman T, Elander RT. Process and economic analysis of pretreatment technologies. Biores Technol, 2005, 96: 2019~2025

备注/Memo

备注/Memo:
四川省科技支撑计划项目(No. 2009NZ00045)和中国农业科学院科技经费项目(2009)
更新日期/Last Update: 2011-04-25