|本期目录/Table of Contents|

[1]李利红,仪慧兰,武冬梅.二氧化硫胁迫诱发拟南芥植株含硫抗氧化物水平提高[J].应用与环境生物学报,2010,16(05):613-616.[doi:10.3724/SP.J.1145.2010.00613]
 LI Lihong,YI Huilan,WU Dongmei.Enhancement of Sulfur-containing Antioxidants in Arabidopsis Response to Sulfur Dioxide Fumigation[J].Chinese Journal of Applied & Environmental Biology,2010,16(05):613-616.[doi:10.3724/SP.J.1145.2010.00613]
点击复制

二氧化硫胁迫诱发拟南芥植株含硫抗氧化物水平提高()
分享到:

《应用与环境生物学报》[ISSN:1006-687X/CN:51-1482/Q]

卷:
16卷
期数:
2010年05期
页码:
613-616
栏目:
胁迫抗性生理及分子机制专栏
出版日期:
2010-10-25

文章信息/Info

Title:
Enhancement of Sulfur-containing Antioxidants in Arabidopsis Response to Sulfur Dioxide Fumigation
作者:
李利红仪慧兰武冬梅
(山西大学生命科学学院,环境科学与工程研究中心 太原 030006)
Author(s):
LI LihongYI HuilanWU Dongmei
(Research Center of Environmental Science and Engineering, School of Life Sciences, Shanxi University, Taiyuan 030006, China)
关键词:
拟南芥SO2硫同化作用含硫抗氧化物 胁迫生理
Keywords:
Arabidopsis thaliana sulfur dioxide sulfur assimilation sulfur-containing antioxidant stress physiology
分类号:
X173 : Q945.78
DOI:
10.3724/SP.J.1145.2010.00613
文献标志码:
A
摘要:
以拟南芥(Arabidopsis thaliana)为材料,研究二氧化硫(SO2)熏气对植株硫同化作用的影响. 结果显示,SO2熏气后,拟南芥植株地上组织中硫同化关键酶半胱氨酸合成酶(OAS-TL)活性提高,半胱氨酸(Cys)和谷胱甘肽(GSH)含量显著增加,谷胱甘肽硫转移酶(GST)和谷胱甘肽过氧化物酶(GSH-PX)的活性诱导性增高;GSH-PX、GST和硫氧还蛋白等多种与逆境生理关系密切的基因表达上调. 结果表明,SO2胁迫能诱导拟南芥植株硫同化作用增强,使Cys和GSH水平提高,促进相关防御酶活性及基因表达水平升高,以有效清除植物细胞中的活性氧和其它胞内有毒代谢物,提高植株对逆境的适应性. 图3 表1 参20
Abstract:
The response of sulfur assimilation process to sulfur dioxide (SO2) was investigated in SO2-fumigatited Arabidopsis thaliana (L.). Four-week-old plants were exposed to 0, 2.5, 10 and 30 mg m-3 of SO2 for 120 h, respectively. The activity of cysteine synthase [O-acetylserine(thiol) lyase, OAS-TL], a key enzyme of sulfur assimilation, increased significantly in A. thaliana shoots after exposure to SO2. Meanwhile, Cys content enhanced markedly with increasing OAS-TL activity. Our results demonstrated an enhancement of sulfur assimilation in SO2-fumigated A. thaliana plants. Moreover, GSH level and GSH-related enzymes activities increased significantly and maintained higher levels during SO2 fumigation. The activities of glutathione peroxidase (GSH-PX) and glutathione S-transferase (GST) enhanced with increasing SO2 concentration and exposure time. By using Affymetrix ATH1 GeneChip, a genomic-wide gene expression was investigated in A. thaliana plants exposed to 30 mg m-3 SO2 for 72 h. Analyses of gene expression profile indicated that some stress response genes including GSH-PXs, GSTs and thioredoxin (TRXs) were strongly up-regulated in SO2-fumigated A. thaliana shoots. The increases in mRNA levels of GSTU3 and TRXh8 in response to SO2 fumigation were confirmed by the results of semi-quantitative RT-PCR. Our results indicated that high concentration of SO2 could enhance sulfur assimilation process and cause Cys and GSH contents increase in plant cells. The enhancement of GSH content and GSH-related defense enzymes activities might mediate plant adaption to SO2 stress. Fig 3, Tab 1, Ref 20

参考文献/References:

1 Kopriva S. Regulation of sulfate assimilation in Arabidopsis and beyond. Ann Bot, 2006, 97: 479~495
2 Heeg C, Kruse C, Jost R, Gutensohn M, Ruppert T, Wirtz M, Hell R. Analysis of the Arabidopsis o-acetylserine (thiol) lyase gene family demonstrates compartment- specific differences in the regulation of cysteine synthesis. Plant Cell, 2008, 20: 168~185
3 Lopez-Martin MC, Becana M, Romero LC, Gotor C. Knocking out cytosolic cysteine synthesis compromises the antioxidant capacity of the cytosol to maintain discrete concentrations of hydrogen peroxide in Arabidopsis. Plant Physiol, 2008, 147: 562~572
4 Mates JM, Perez-Gomez C, Nunez de Castro I, Asenjo M, Márquez J. Glutathione and its relationship with intracellular redox status, oxidative stress and cell proliferation/death. Int J Biochem Cell Biol, 2002, 34: 439~458
5 Meyer AJ, Hell R. Glutathione homeostasis and redox-regulation by sulfhydryl groups. Photosynth Res, 2005, 86: 435~457
6 Noji M, Saito M, Nakamura M, Aono M, Saji H, Saito K. Cysteine synthase overexpression in tobacco confers tolerance to sulfur-containing environment pollutants. Plant Physiol, 2001, 126: 973~980
7 Dominguez-Solis JR, Lopez-Martin MC, Ager FJ, Ynsa MD, Romero LC, Gotor C. Increased cysteine availability is essential for cadmium tolerance and accumulation in Arabidopsis thaliana. Plant Biotechnol J, 2004, 2: 469~476
8 Nakamura M, Kuramata M, Kasugai I, Abe M, Youssefian S. Increased thiol biosynthesis of transgenic poplar expressing a wheat O-acetylserine (thiol) lyase enhances resistance to hydrogen sulfide and sulfur dioxide toxicity. Plant Cell Rep, 2008, 28: 313~323
9 Qian YC (钱永常), Yu SW (余叔文). Oxidation of sulfur dioxide on plants and anti-oxidation of plants. Plant Physiol Commun (植物生理学通讯), 1991, 27 (5): 326~331
10 Van Der Kooij TAW, De Kok LJ, Haneklaus S, Schnug E. Uptake and metabolism of sulfur dioxide by Arabidopsis thaliana. New Phytol, 1997, 135: 101~107
11 Li LH (李利红),Yi HL (仪慧兰),Wang L (王磊), Li XF (李秀芬). Effects of sulfur dioxide on the morphological and physiological biochemical parameters in Arabidopsis thaliana plants. J Agro-environ Sci (农业环境科学学报), 2008, 27 (2): 525~529
12 Gaitonde MK. A spectrophotometric method for the direct determination of cysteine in the presence of other naturally occurring amino acids. Biochem J, 1967, 104: 627~633
13 Anderson ME. Determination of glutathione and glutathione disulfide in biological samples. Methods Enzymol, 1985, 113: 548~555
14 Habig WH, Pabst MJ, Jakoby WB. Glutathione S-transferases the first enzymatic step in mereapturic acid formation. J Biol Chem , 1974, 249: 7130~7139
15 Wendel A. Glutathione peroxidase. Methods Enzymol, 1981, 77: 325~333
16 Bonner ER, Cahoon RE, Knapke SM, Jez JM. Molecular basis of cysteine biosynthesis in plants: structural and functional analysis of o-acetylserine sulfhydrylase from Arabidopsis thaliana. J Biol Chem, 2005, 280: 38803 ~38813
17 Yi HL (仪慧兰), Si LY (司良燕), Meng ZQ (孟紫强). Cytogenetic damage at mitotic stages of Vicia faba root cells induced by sodium bisulfite. Chin J Appl Environ Biol (应用与环境生物学报), 2002, 8 (4): 383~386
18 Guo ZJ (郭泽建), Li DB (李德葆). Active oxygen species in plant disease resistance. Acta Bot Sin (植物学报), 2000, 42 (9): 881~889
19 Yi HL (仪慧兰), Liu J (刘静). Protective effect of cysteine against SO2-induced oxidative damage in barley. J Shanxi Univ Nat Sci Ed (山西大学学报自然科学版), 2007, 30 (2): 270~273
20 Balmer Y, Vensel WH, Tanaka CK, Hurkman WJ, Gelhaye E, Rouhier N, Jacquot JP, Manieri W, Schürmann P, Droux M, Buchanan BB. Thioredoxin links redox to the regulation of fundamental processes of plant mitochondria. Proc Natl Acad Sci USA, 2004, 101: 2642~2647

相似文献/References:

[1]赵昕,盛芬玲,赵敏桂,等.NaCl胁迫下盐芥和拟南芥化合物含量与蛋白质结构变化比较——傅立叶红外光谱法[J].应用与环境生物学报,2008,14(03):371.
 ZHAO Xin,et al..Effects of Salt Stress on Chemical Composition and Protein Conformation Changes in Thellungiella and Arabidopsis Seedlings[J].Chinese Journal of Applied & Environmental Biology,2008,14(05):371.
[2]王爱萍,景蕊莲,杨武德,等.小麦TaMyb2基因转化拟南芥表达载体的构建与遗传转化[J].应用与环境生物学报,2008,14(06):750.[doi:10.3724/SP.J.1145.2008.00750]
 WANG Aiping,JING Ruilian**,et al.Construction and Genetic Transformation of Arabidopsis thaliana Expression Vector of Wheat TaMyb2[J].Chinese Journal of Applied & Environmental Biology,2008,14(05):750.[doi:10.3724/SP.J.1145.2008.00750]
[3]程涛,杨建明,刘辉,等.拟南芥硫酯酶基因(atfata)在大肠杆菌中的表达及其对游离脂肪酸合成的影响[J].应用与环境生物学报,2011,17(04):568.[doi:10.3724/SP.J.1145.2011.00568]
 CHENG Tao,YANG Jianming,LIU Hui,et al.Expression of Arabidopsis thaliana Thioesterase Gene (atfata) in Escherichia coli and Its Influence on Biosynthesis of Free Fatty Acid[J].Chinese Journal of Applied & Environmental Biology,2011,17(05):568.[doi:10.3724/SP.J.1145.2011.00568]
[4]马磊,张翔,田永强,等.拟南芥基因组中注释为异胡豆苷合成酶的基因克隆及异源表达[J].应用与环境生物学报,2013,19(02):224.[doi:10.3724/SP.J.1145.2013.00224]
 MA Lei,ZHANG Xiang,TIAN Yongqiang,et al.Molecular Cloning and Heterologous Expression of Putative Strictosidine Synthases from Arabidopsis thaliana[J].Chinese Journal of Applied & Environmental Biology,2013,19(05):224.[doi:10.3724/SP.J.1145.2013.00224]
[5]侯佩,冯媛媛,余桂容,等.拟南芥XERICO基因诱导表达提高转基因植物的耐旱性[J].应用与环境生物学报,2013,19(06):969.[doi:10.3724/SP.J.1145.2013.00969]
 HOU Pei,FENG Yuanyuan,YU Guirong,et al.Improved Drought Tolerance of Transgenic Arabidopsis thaliana by Inducible Expression of XERICO Gene[J].Chinese Journal of Applied & Environmental Biology,2013,19(05):969.[doi:10.3724/SP.J.1145.2013.00969]
[6]陈杰,许长征,曹颖倩,等.不同重金属对拟南芥根系特征的影响比较[J].应用与环境生物学报,2017,23(06):1122.[doi:10.3724/SP.J.1145.2017.03003]
 CHEN Jie,XU Changzheng,CAO Yingqian,et al.Heavy-metal-induced morphological changes of root characteristics in Arabidopsis thaliana[J].Chinese Journal of Applied & Environmental Biology,2017,23(05):1122.[doi:10.3724/SP.J.1145.2017.03003]
[7]常斐斐,曹曦跃,彭婕,等.褪黑素诱导拟南芥抗芸薹根肿菌[J].应用与环境生物学报,2018,24(01):75.[doi:10.19675/j.cnki.1006-687x.2017.03033]
 CHANG Feifei,CAO Xiyue,PENG Jie,et al.Induced resistance to $Plasmodiophora brassicae$ in $Arabidopsis$ by melatonin*[J].Chinese Journal of Applied & Environmental Biology,2018,24(05):75.[doi:10.19675/j.cnki.1006-687x.2017.03033]
[8]邹婷,刘唤唤,刘永胜,等.拟南芥新基因SI(stress insensitive)参与非生物胁迫应答[J].应用与环境生物学报,2018,24(02):328.[doi:10.19675/j.cnki.1006-687x.2017.05043]
 ZOU Ting,LIU Huanhuan,LIU Yongsheng,et al.A novel gene SI (stress insensitive) is involved in the response to abiotic stress in Arabidopsis[J].Chinese Journal of Applied & Environmental Biology,2018,24(05):328.[doi:10.19675/j.cnki.1006-687x.2017.05043]

备注/Memo

备注/Memo:
国家自然科学基金项目(Nos. 30870454,30470318)和高等学校博士学科点专项科研基金项目(No. 20070108007)资助 Supported by the National Natural Science Foundation of China (Nos. 30870454, 30470318) and the Specialized Research Fund for the Doctoral Program of Higher Education of China (No. 20070108007)
更新日期/Last Update: 2010-10-25