|本期目录/Table of Contents|

[1]孙彦平,靳艳玲,郜晓峰,等.纤维素酸解副产物对Clostridium acetobutylicum CICC8012发酵的影响[J].应用与环境生物学报,2010,16(06):845-850.[doi:10.3724/SP.J.1145.2010.00845]
 SUN Yanping,JIN Yanling,GAO Xiaofeng,et al.Effects of Byproducts from Acid Hydrolysis of Lignocellulose on Butanol Fermentation by Clostridium acetobutylicum CICC8012[J].Chinese Journal of Applied & Environmental Biology,2010,16(06):845-850.[doi:10.3724/SP.J.1145.2010.00845]
点击复制

纤维素酸解副产物对Clostridium acetobutylicum CICC8012发酵的影响()
分享到:

《应用与环境生物学报》[ISSN:1006-687X/CN:51-1482/Q]

卷:
16卷
期数:
2010年06期
页码:
845-850
栏目:
研究论文
出版日期:
2010-12-25

文章信息/Info

Title:
Effects of Byproducts from Acid Hydrolysis of Lignocellulose on Butanol Fermentation by Clostridium acetobutylicum CICC8012
作者:
孙彦平靳艳玲郜晓峰李新波肖瑶赵海
(1中国科学院成都生物研究所 成都 610041)
(2中国科学院研究生院 北京 100049)
Author(s):
SUN Yanping JIN Yanling GAO Xiaofeng LI Xinbo XIAO Yao ZHAO Hai
(1Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China)
(2Graduate University of Chinese Academy of Sciences, Beijing 100049, China)
关键词:
纤维素酸水解抑制物Clostridium acetobutylicum CICC8012丁醇发酵
Keywords:
lignocelluloseacid hydrolysis inhibitor Clostridium acetobutylicum CICC8012 butanol fermentation
分类号:
TK6 : TQ923
DOI:
10.3724/SP.J.1145.2010.00845
文献标志码:
A
摘要:
为确定纤维素酸解副产物对C. acetobutylicum CICC8012发酵生产纤维燃料丁醇的影响,选择乙酸根、甲酸、葡萄糖醛酸、氯化钠、硫酸钠、糠醛、羟甲基糠醛(HMF)、香豆酸、阿魏酸、丁香醛、香草醛等纤维素酸解副产物,研究其对菌种发酵的影响. 结果表明:甲酸和酚类物质的抑制作用强烈,0.5 g/L的甲酸、阿魏酸或香豆酸存在时对丁醇的抑制率分别为88.1%、22.1%、82.4%,丁香醛(≥0.5 g/L)、香草醛(≥2 g/L)可使发酵的延滞期变长,但抑制作用小于阿魏酸和香豆酸;1 g/L的糠醛、HMF、葡萄糖醛酸存在时对丁醇的抑制率分别为9.8%、4.6%、7.3%,10 g/L乙酸钠存在时对丁醇的抑制率为4.8%,这4种物质对丁醇发酵的抑制作用不大;硫酸钠、氯化钠质量浓度大于5 g/L时对发酵产生抑制作用,浓度达到20 g/L时菌体几乎不能生长. 当各抑制物混合时,若抑制物的含量超过临界点,各抑制物间存在相互促进的作用;小麦秸秆水解液的发酵结果表明,水解液成分复杂,抑制作用更为强烈. 图3 表7 参20
Abstract:
Several byproducts of acid hydrolysis, including sodium acetate, formic acid, glucuronic acid, furfural, 5-hydroxymethylfurfural, sodium chloride, sodium sulfate, ferulic acid, coumaric acid, syringaldehyde and vanillin, were added into the medium at different concentrations to investigate their effects on butanol fermentation by Clostridium acetobutylicum CICC8012. The fermentation of butanol by the strain was strongly inhibited by formic acid and phenolic compounds. The butanol inhibition rate was 88.1%, 22.1% and 82.4% respectively when o.5 g/L formic acid, ferulic acid or coumaric acid existed in the medium. Syringaldehyde (≥0.5 g/L) and vanillin (≥2 g/L) caused a much longer lag phase, but their negative effects on butanol fermentation were weaker than those of ferulic acid and coumaric acid. The butanol inhibition rate was 9.8%, 4.6% and 7.3% respectively when 1 g/L furfural, 5-hydroxiymethylfurfural or glucuronic acid existed in the medium. The butanol inhibition rate was 4.8% when 10 g/L sodium acetate existed in the medium. The inhibiting effects by furfural, 5-hydroxiymethylfurfural, glucuronic acid and sodium acetate were relatively weaker. It began to show inhibiting effects when the concentrations of sodium sulfate and sodium chloride exceeded 5 g/L. When their concentrations reached 20 g/L, the fermentation was almost inhibited. When the inhibitors were mixed together and their concentrations were above the critical point, the inhibiting effect was enhanced. The result of fermentation from wheat straw hydrolysate indicated that the composition of the hydrolysate was more complicated and the inhibiting effect was stronger. Fig 3, Tab 7, Ref 20

参考文献/References:

1 Liu LQ (刘力强), Li LP (李丽萍), Li LQ (李立强), Mi ZJ (米造吉), Xie P (谢萍), Huang PQ (黄品奇), Wang ZP (王正品). 生物丁醇燃料产业化制造中的问题及发展趋势. Biotechnol Ind (生物产业技术), 2008, 5: 36~38
2 Qureshi N, Ezeji T C, Ebener J, Bruce SD, Michael AC, Hans PB. Butanol production by Clostridium beijerinckii. Part I: Use of acid and enzyme hydrolyzed corn fiber. Bioresour Technol, 2008, 99: 5915~5922
3 Li K (李科), Jin YL (靳艳玲), Gan MZ (甘明哲), Liu XF (刘晓风), Zhao H (赵海). Progress in research of key techniques for ethanol production from lignocellulose. Chin J Appl Environ Boil (应用与环境生物学报), 2008, 14 (6): 877~884
4 Zverlov V, Verezina O, Velikodvorskaya GA. Bacterial acetone and butanol production by industrial fermentation in the Soviet Union: Use of hydrolyzed agricultural waste for biorefinery. Appl Microb Biotechnol, 2006, 71: 587~597
5 Mielenz JR. Ethanol production from biomass: Technology and commercialization status. Ecol & Ind Microbiol, 2001, 4 (3): 324~329
6 Ezeji T, Blaschek HP. Fermentation of dried distillers’ grains and solubles (DDGS) hydrolysates to solvent and value-added products by solventogenic clostridia. Bioresour Technol, 2008, 99: 5232~5242
7 Zhuang JP (庄军平), Lin L (林鹿), Pang CS (庞春生), Liu Y (刘颖), Sun Y (孙勇). Research advances in detoxification of lignocellulose hydrolysates-making. Mod Chem Ind (现代化工), 2009, 29 (2): 19~24
8 Giovani BMC, Solange IM, Elisangela JC, Joao BAS. Comparison of different procedures for the detoxification of eucalyptus hemicellulosic hydrolysate for use in fermentative processes. J Chem Technol Biotechnol, 2006, 81: 152~157
9 Lin B (林贝), Zhao XQ (赵心清), Ge XM (葛旭萌), Bai FW (白凤武). The effects of dilute acid hydrolysate by-products of corn stover on ethanol fermentation of xylose-utilising Saccharomyces cerevisiae 6508-127. China Biotechnol (中国生物工程杂志), 2007, 27 (7): 61~67
10 Alfredo M, Maria ER, Melissa LW, Sean WY, James FP, Lonnie OI. Detoxification of dilute acid hydrolysates of lignocellulose with lime. Boitechnol Prog, 2001, 17: 287~293
11 Ezeji T, Qureshi N, Blaschek HP. Butanol production from agricultural residues:impact of degradation products on clostridium beijerinckii growth and butanol fermentation. Biotechnol Bioengin, 2007, 97 (6): 1460~1469
12 Qureshi N, Saha BC, Hector RE, Cott MA. Removal of fermentation inhibitors form alkaline peroxide pretreated and enzymatically hydrolyzed wheat straw: Production of butanol from hydrolysate using Clostridium beijerinckii in batch reactors. Biomass & Bioenergy, 2008, 32: 1353~1358
13 Dae HC, Yun JL, Youngsoon UM. Detoxification of model phenolic compounds in lignocellulosic hydrolysates with peroxidase for butanol production from Clostridium beijerinckii. Appl Microbiol Biotechnol, 2009, 83: 1035~1043
14 Ning ZX (宁正祥). Food Analysis Manual. Beijing, China: China Light Industry Press (北京: 中国轻工业出版社), 1998
15 Li DM (李冬敏), Chen HZ (陈洪章). Fermentation of acetone and butanol coupled with enzymatic hydrolysis of steam exploded cornstalk stover in a membrane reactor. Chin J Proc Eng (过程工程学报), 2007, 7 (6): 1212~1218
16 Joy RK, Beth EM, Sjill S, Teddy WW. Concurrent validity of upper-extremity volume estimates: Comparison of calculated volume derived from girth measurements and water displacement volume. Phys Ther, 2003, 83 (2): 134~145
17 Hu CY (胡翠英), Du YP (堵益平), Yang Y (杨影), Shi ZP (史仲平), Duan ZY (段作营), Preliminary study on coupling between biodieseld and acetone-butanol fermentation. Chin J Bioproc Eng (生物加工过程), 2007, 5 (1): 27~33
18 Yuan H (袁华), Sun YB (孙炎彬), Yan ZG (闫志国), Du ZP (杜治平), Wu YX (吴元欣). Improvement on the esterification and crystallization of D-glucuronolactione. Appl Chem Ind, 2007, 36 (4): 334~337
19 Plakunov VK, Zhurina MV, Beliaev SS. Resistance of the petroleum-oxidizing microorganism dietzia sp to hyperosmotic shock in reconstituted biofilms. Mikrobiologiia, 2008, 77 (5): 581~589
20 Dae HC, Yun JL, Youngsoon UM, Byoung IS, Yong HK. Detoxification of model phenolic compounds in lignocellulosic hydrolysates with peroxidase for butanol production from Clostridium berjerinckii. Appl Microbiol Biotechnol, 2009, 83 (6): 1035~1043

相似文献/References:

[1]姚梦吟,刘晓风,袁月祥,等.一株选择性降解木质素菌的筛选及其对玉米秸秆的降解[J].应用与环境生物学报,2009,15(03):427.[doi:10.3724/SP.J.1145.2009.00427]
 YAO Mengyin,LIU Xiaofeng,YUAN Yuexiang,et al.Isolation of A Fungus with Selective Delignification and Its Degradation of Corn Stalk[J].Chinese Journal of Applied & Environmental Biology,2009,15(06):427.[doi:10.3724/SP.J.1145.2009.00427]
[2]任海伟,李金平,张轶,等.白酒丢糟糖化条件的优化及乙醇发酵[J].应用与环境生物学报,2013,19(05):833.[doi:10.3724/SP.J.1145.2013.00833]
 REN Haiwei,LI Jinping,ZHANG Yi,et al.Optimization of Saccharification for Distillers Grains and Ethanol Fermentation[J].Chinese Journal of Applied & Environmental Biology,2013,19(06):833.[doi:10.3724/SP.J.1145.2013.00833]
[3]谭芙蓉,吴波,代立春,等.纤维素类草本能源植物的研究现状[J].应用与环境生物学报,2014,20(01):162.[doi:10.3724/SP.J.1145.2014.00162]
 TAN Furong,WU Bo,DAI Lichun,et al.Research and prospect of cellulosic herbaceous energy plant[J].Chinese Journal of Applied & Environmental Biology,2014,20(06):162.[doi:10.3724/SP.J.1145.2014.00162]
[4]何京钟,黄钧,赵晶桃,等.微生物菌剂堆肥中草药渣中试研究[J].应用与环境生物学报,2015,21(05):860.[doi:10.3724/SP.J.1145.2015.03048]
 HE Jingzhong,HUANG Jun,ZHAO Jingtao,et al.Pilot scale composting of Chinese herbal residues with inoculum of microbial agents[J].Chinese Journal of Applied & Environmental Biology,2015,21(06):860.[doi:10.3724/SP.J.1145.2015.03048]
[5]周春梅,刘琳,申旭东,等.青藏高原东部高寒沙化草地中高山柳凋落叶分解特征的空间异质性[J].应用与环境生物学报,2019,25(04):808.[doi:10.19675/j.cnki.1006-687x.2018.12057]
 ZHOU Chunmei,LIU Lin**,SHEN Xudong,et al.Spatial heterogeneity of the decomposition characteristics of the litter leaf of Salix cupularis in an alpine desertified meadow ecosystem in the eastern Tibetan Plateau[J].Chinese Journal of Applied & Environmental Biology,2019,25(06):808.[doi:10.19675/j.cnki.1006-687x.2018.12057]
[6]周春梅 刘琳** 申旭东 高武超 李其 孙飞达 赵景学 周冀琼.青藏高原东部高寒沙化草地中高山柳凋落叶分解特征的空间异质性*[J].应用与环境生物学报,2019,25(06):1.[doi:10.19675/j.cnki.1006-687x.2018.12057]
 ZHOU Chunmei,LIU Lin**,SHEN Xudong,et al.Spatial heterogeneity of decomposition characteristics on litter leaf of Salix cupularis in an alpine desertified meadow ecosystem of the eastern Tibetan Plateau*[J].Chinese Journal of Applied & Environmental Biology,2019,25(06):1.[doi:10.19675/j.cnki.1006-687x.2018.12057]

备注/Memo

备注/Memo:
国家科技支撑计划项目(No. 2011BAD22B03)资助
更新日期/Last Update: 2010-12-29