|本期目录/Table of Contents|

[1]赵杨,何正波,陈斌,等.昆虫orthodenticle基因研究进展[J].应用与环境生物学报,2010,16(02):289-293.[doi:10.3724/SP.J.1145.2010.00289]
 ZHAO Yang,HE Zhengbo,CHEN Bin,et al.Progress in Research of Insect orthodenticle Gene[J].Chinese Journal of Applied & Environmental Biology,2010,16(02):289-293.[doi:10.3724/SP.J.1145.2010.00289]
点击复制

昆虫orthodenticle基因研究进展()
分享到:

《应用与环境生物学报》[ISSN:1006-687X/CN:51-1482/Q]

卷:
16卷
期数:
2010年02期
页码:
289-293
栏目:
综述
出版日期:
2010-04-25

文章信息/Info

Title:
Progress in Research of Insect orthodenticle Gene
文章编号:
200908006
作者:
赵杨何正波陈斌司风玲
(重庆师范大学生命科学学院,昆虫与分子生物学研究所,重庆高校生物活性物质工程研究中心,重庆高校动物生物学重点实验室 重庆 400047)
Author(s):
ZHAO YangHE ZhengboCHEN BinSI Fengling
(Institute of Entomology and Molecular Biology, Chongqing Engineering Research Center of Bioactive Substances, Chongqing Key Laboratory of Animal Biology, College of Life Sciences, Chongqing Normal University, Chongqing 400047, China)
关键词:
orthodenticle基因昆虫胚胎发育模式形成头部分节
Keywords:
orthodenticle gene insect embryonic development patterning formation cephalic segmentation
分类号:
Q961
DOI:
10.3724/SP.J.1145.2010.00289
文献标志码:
A
摘要:
昆虫胚胎发育受一系列基因调控,这些基因按照时间、空间顺序启动或关闭,对胚胎细胞的生长和分化进行调节. orthodenticle(otd)是间隙基因,编码含同源结构域的转录因子,是昆虫胚胎发育的关键基因. 在没有bicoid基因的昆虫中,otd基因取代了bicoid的部分功能,建立胚胎前后轴的极性. 在昆虫原头体节形成过程中,otd等间隙基因直接激活体节极性基因的表达,而对控基因不起作用. 此外,otd还与昆虫中枢神经和光感受器的形成有关. 从进化方面来看,otd基因可能是从调控后生动物的光感受、脑发育和昼夜节律的基因中逐渐演变形成,并随着昆虫的系统发育而演化,其表达模式和功能既具有保守性又具有变异性. 本文就昆虫otd基因的结构、功能和进化等方面的研究进展进行了综述. 图1 参62
Abstract:
The embryogenesis of insect is controlled by a series of genes, which are turned on or off according to a precise time and spatial sequence to regulate the growth and differentiation of embryonic cells. Among these genes, orthodenticle (otd) is a gap gene which encodesa homeobox transcription factor and plays a key role in embryogenesis of insect. In some insects without bicoid gene, otd partially substitutes for bicoid function and establishes the polarity of anterior-posterior axis in early embryogenesis. In the cephalic segmentation in insects, the pair-rule genes do not play function, but gap genes, like otd, directly activate the expression of segment polarity genes. Furthermore, otd gene also involves in the process of developments of eyes and nervous system. otd possibly originates from those genes that regulate the photoreception, brain development and circadian rhythms in metazoan organisms, and then gradually differentiates with the phylogenetic evolution of insects, so the function of otd shows diversities in different insect groups. In this paper, the otd gene is reviewed, including its structure, function and evolution. Fig 1, Ref 62

参考文献/References:

1 Dearden P, Akam M. Developmental evolution: Axial patterning in insects. Curr Biol, 1999, 9 (16): 591~594
2 Finkelstein R, Smouse D, Capaci TM, Spradling AC, Errimon NP. The orthodenticle gene encodes a novel homeo domain protein involved in the development of the Drosophila nervous system and ocellar visual structures. Genes Dev, 1990, 4 (9): 1516~1527
3 Simeone A, Acampora D, Mallamaci A, Stornaiuolo A, Apice MRD, Nigro V, Boncinelli E. A vertebrate gene related to orthodenticle contains a homeodomain of the bicoid class and demarcates anterior neuroectoderm in the gastrulating mouse embryo. EMBO J, 1993, 12 (7): 2735~2747
4 Leuzinger S, Hirth F,Gerlich D, Acampora D, Simeone A, Gehring WJ, Finkelstein R, Furukubo-Tokunaga K, Reichert H. Equivalence of the fly orthodenticle gene and the human OTX genes in embryonic brain development of Drosophila. Development, 1998, 125 (9): 1703~1710
5 Simeone A, Puelles E, Acampora D. The Otx family. Curr Opin Genet Dev, 2002, 12 (4): 409~415
6 Li Y, Brown SJ, Hausdorf B, Tautz D, Denell RE, Finkelstein R. Two orthodenticle-related genes in the short-germ beetle Tribolium castaneum. Dev Genes Evol, 1996, 206: 35~45
7 Consortium HGS. Insights into social insects from the genome of the honeybee Apis mellifera. Nature, 2006, 443 (7114): 931~949
8 Lynch J A, Brent AE, Leaf DS, Pultz MA, Desplan C. Localized maternal orthodenticle patterns anterior and posterior in the long germ wasp Nasonia. Nature, 2006, 439 (7077): 728~732
9 FrancksC, Fisher SE, Olson RK, Pennington BF, Smith SD, DeFries JC, Monaco AP. Fine mapping of the chromosome 2p12-16 dyslexia susceptibility locus: Quantitative association analysis and positional candidate genes SEMA4F and OTX1. Psychiatr Genet, 2002, 12 (1): 35~41
10 Frantz GD,. Weimann JM, Levin ME, McConnell SK. Otx1 and Otx2 define layers and regions in developing cerebral cortex and cerebellum. J Neurosci, 1994, 14 (10): 5725~5740
11 Blitz IL, Cho KW. Anterior neurectoderm is progressively induced during gastrulation: The role of the Xenopus homeobox gene orthodenticle. Development, 1995, 121 (4): 993~1004
12 Li Y, Allende ML, Finkelstein R, Weinberg ES. Expression of two zebrafish orthodenticle-related genes in the embryonic brain. Mech Dev, 1994, 48 (3): 229~244
13 Mori H, Miyazaki Y, Morita T, Nitta H, Mishina M. Different spatio-temporal expressions of three otx homeoprotein transcripts during zebrafish embryogenesis. Brain Res Mol Brain Res, 1994, 27 (2): 221~231
14 Lemaire L, Kessel M. Gastrulation and homeobox genes in chick embryos. Mech Dev, 1997, 67 (1): 3~16
15 Bally-Cuif L, Gulisano M, Broccoli V, Boncinelli E. c-otx2 is expressed in two different phases of gastrulation and is sensitive to retinoic acid treatment in chick embryo. Mech Dev, 1995, 49 (1~2): 49~63
16 Gan L, Mao CA, Wikramanayake A, Angerer LM, Angerer RC, Klein WH. An orthodenticle-related protein from Strongylocentrotus purpuratus. Dev Biol, 1995, 167 (2): 517~528
17 Simeone A, Acampora D, Gulisano M, Stornaiuolo A, Boncinelli E. Nested expression domains of four homeobox genes in developing rostral brain. Nature, 1992, 358 (6388): 687~690
18 Lynch J, Desplan C. Evolution of development: beyond bicoid. Curr Biol, 2003, 13 (14): 557~559
19 Rivera-Pomar R, Jackle H. From gradients to stripes in Drosophila embryogenesis: Filling in the gaps. Trends Genet, 1996, 12 (11): 478~483
20 Zhang QW (张青文). Insect Genetics. Beijing, China: Science Press (北京: 科学出版社), 2000
21 Davis GK, Patel NH. Short, long, and beyond: Molecular and embryological approaches to insect segmentation. Annu Rev Entomol, 2002, 47: 669~699
22 Nüsslein-Volhard C, Frohnhöfer HG, Lehmann R. Determination of anteroposterior polarity in Drosophila. Science, 1987, 238: 1675~1681
23 St Johnston D, Nüsslein-Volhard C. The origin of pattern and polarity in the Drosophila embryo. Cell, 1992, 68: 201~219
24 Frohnhöfer HG, Nüsslein-Volhard C. Organization of anterior pattern in the Drosophila embryo by the maternal gene bicoid. Nature, 1986, 324: 120~125
25 Driever W, Siegel V, Nüsslein-Volhard C. Autonomous determination of anterior structures in the early Drosophila embryo by the bicoid morphogen. Development, 1990, 109: 811~820
26 Brown S, Fellers J, Shippy T, Denell R, Stauber M, Schmidt-Ott U. A strategy for mapping bicoid on the phylogenetic tree. Curr Biol, 2001, 11: R43~44
27 Stauber M, Prell A, Schmidt-Ott U. A single Hox3 gene with composite bicoid and zerknüllt expression characteristics in non-Cyclorrhaphan flies. Proc Natl Acad Sci USA, 2002, 99: 274~279
28 McGregor AP. How to get ahead: the origin, evolution and function of bicoid. Bioessays, 2005, 27: 904~913
29 McGregor AP. Wasps, beetles and the beginning of the ends. Bioessays, 2006, 28 (7): 683~686
30 Schroder R. The genes orthodenticle and hunchback substitute for bicoid in the beetle Tribolium. Nature, 2003, 422 (6932): 621~625
31 Schinko JB, Kreuzer N, Offen N, Posnien N, Wimmer EA, Bucher G. Divergent functions of orthodenticle, empty spiracles and buttonhead in early head patterning of the beetle Tribolium castaneum (Coleoptera). Dev Biol, 2008, 317 (2): 600~613
32 Janody F, Reischl J, Dostatni N. Persistence of Hunchback in the terminal region of the Drosophila blastoderm embryo impairs anterior development. Development, 2000, 127 (8): 1573~1582
33 Lemke S, Schmidt-Ott U. Evidence for a composite anterior determinant in the hover fly Episyrphus balteatus (Syrphidae), a cyclorrhaphan fly with an anterodorsal serosa anlage. Development, 2009, 136 (1): 117~127
34 Finkelstein R, Perrimon N. The orthodenticle gene is regulated by bicoid and torso and specifies Drosophila head development. Nature, 1990, 346 (6283): 485~488
35 Wieschaus E, Perrimon N, Finkelstein R. orthodenticle activity is required for the development of medial structures in the larval and adult epidermis of Drosophila. Development, 1992, 115 (3): 801~811
36 Gao Q, Wang Y, Finkelstein R. Orthodenticle regulation during embryonic head development in Drosophila. Mech Dev, 1996, 56 (1~2): 3~15
37 Gallitano-Mendel A , Finkelstein R. Ectopic orthodenticle expression alters segment polarity gene expression but not head segment identity in the Drosophila embryo. Dev Biol, 1998, 199 (1): 125~137
38 Lehmann R, Nüsslein-Volhard C. hunchback, a gene required for segmentation of anterior and posterior regions of the Drosophila embryo. Dev Biol, 1987, 119: 402~417
39 Berleth T, Burri M, Thoma G, Bopp D, Richstein S, Frigerio G, Noll M, Nüsslein-Volhard C. The role of localization of bicoid RNA in organizing the anterior pattern of the Drosophila embryo. EMBO J, 1988, 7: 1749~1756
40 Lynch JA, Olesnicky EC, Desplan C. Regulation and function of tailless in the long germ wasp Nasonia vitripennis. Dev Genes Evol, 2006, 216 (7~8): 493~498
41 Cohen SM, Jurgens G. Drosophila headlines. Trends Genet, 1991, 7: 267~272
42 Finkelstein R, Perrimon N. The molecular genetics of headdevelopment in Drosophila melanogaster. Development, 1991, 112: 899~912
43 Cohen SM, Jurgens G. Gap-like segmentation genes that mediate Drosophila head development. Nature, 1990, 346: 482~485
44 Gao Q, Finkelstein R. Targeting gene expression to the head: the Drosophila orthodenticle gene is a direct target of the Bicoid morphogen. Development, 1998, 125 (21): 4185~4193
45 Wimmer EA, Jackle H, Pfeifle C, Cohen SM. A Drosophila homologue of human Sp1 is a head-specific segmentation gene. Nature, 1993, 366 (6456): 690~694
46 Grossniklaus U, Cadigan KM, Gehring WJ. Three maternal coordinate systems cooperate in the patterning of the Drosophila head. Development, 1994, 120 (11): 3155~3171
47 Royet J, Finkelstein R. Pattern formation in Drosophila head development: the role of the orthodenticle homeobox gene. Development, 1995, 121 (11): 3561~3572
48 Younossi-Hartenstein A, Green P, Liaw GJ, Rudolph K, Lengyel J, Hartenstein V. Control of early neurogenesis of the Drosophila brain by the head gap genes tll, otd, ems, and btd. Dev Biol, 1997, 182 (2): 270~283
49 Rudolph KM, Liaw GJ, Daniel A, Green P, Courey AJ, Hartenstein V, Lengyel JA. Complex regulatory region mediating tailless expression in early embryonic patterning and brain development. Development, 1997, 124 (21): 4297~4308
50 Royet J, Finkelstein R. hedgehog, wingless and orthodenticle specify adult head development in Drosophila. Development, 1996, 122 (6): 1849~1858
51 Struhl G, Struhl K, MacDonald PM. The gradient morphogen bicoid is a concentration-dependent transcriptional activator. Cell, 1989, 57:1259~1273
52 Driever W, Nusslein-Volhard C. The bicoid protein is a positive regulator of hunchback transcription in the early Drosophila embryo. Nature, 1989, 337:138~143
53 Schroder R, Beermann A, Wittkopp N, Lutz R. From development to biodiversity-Tribolium castaneum, an insect model organism for short germband development. Dev Genes Evol, 2008, 218 (3~4): 119~126
54 Reichert H, Simeone A. Conserved usage of gap and homeotic genes in patterning the CNS. Curr Opin Neurobiol, 1999, 9 (5): 589~595
55 Chang J, Jeon SH, Kim SH. The hierarchical relationship among the spitz/Egfr signaling genes in cell fate determination in the Drosophila ventral neuroectoderm. Mol Cells, 2003, 15 (2): 186~193
56 Tahayato A, Sonneville R, Pichaud F, Wernet MF, Papatsenko D, Beaufils P, Cook T, Desplan C. Otd/Crx, a dual regulator for the specification of ommatidia subtypes in the Drosophila retina. Dev Cell, 2003, 5 (3): 391~402
57 Vandendries ER, Johnson D, Reinke R. orthodenticle is required for photoreceptor cell development in the Drosophila eye. Dev Biol, 1996, 173 (1): 243~255
58 Xie B, Charlton-Perkins M, McDonald E, Gebelein B, Cook T. Senseless functions as a molecular switch for color photoreceptor differentiation in Drosophila. Development, 2007, 134 (23): 4243~4253
59 Sprecher SG, Pichaud F, Desplan C. Adult and larval photoreceptors use different mechanisms to specify the same Rhodopsin fates. Genes Dev, 2007, 21 (17): 2182~2195
60 Lichtneckert R, Reichert H. Insights into the urbilaterian brain: conserved genetic patterning mechanisms in insect and vertebrate brain development. Heredity, 2005, 94 (5): 465~477
61 Rosenberg MI, Lynch JA, Desplan C. Heads and tails: Evolution of antero-posterior patterning in insects. Biochim Biophys Acta, 2009, 1789 (4): 333~342
62 Ranade SS, Yang-Zhou D, Kong SW, McDonald EC, Cook TA, Pignoni F. Analysis of the otd-dependent transcriptome supports the evolutionary conservation of CRX/OTX/OTD functions in flies and vertebrates. Dev Biol, 2008, 315 (2): 521~534

相似文献/References:

[1]马景津,王先哲,许绍伟,等.黑水虻生物转化残留物二次堆肥物料生化及溶解性有机质动态演化特征[J].应用与环境生物学报,2021,27(06):1583.[doi:10.19675/j.cnki.1006-687x.2020.07012]
 MA Jingjin,WANG Xianzhe,XU Shaowei,et al.Dynamic features of biochemical properties and dissolved organic matter in black soldier fly larvae vermicompost during secondary composting[J].Chinese Journal of Applied & Environmental Biology,2021,27(02):1583.[doi:10.19675/j.cnki.1006-687x.2020.07012]

备注/Memo

备注/Memo:
国家自然科学基金项目(No. 30700435)和重庆市自然科学基金项目(Nos. CSTC2008BA5030,CSTC2009BB1387)资助 Supported by the National Natural Science Foundation of China (No. 30700435) and the Natural Science Foundation of Chongqing, China (Nos. CSTC2008BA5030, CSTC2009BB1387)
更新日期/Last Update: 2010-04-20