|本期目录/Table of Contents|

[1]贾诚,朱恂,田鑫,等.胞外初始底物浓度对产氢光合细菌葡萄糖跨膜传输及代谢的影响[J].应用与环境生物学报,2010,16(02):264-268.[doi:10.3724/SP.J.1145.2010.00264]
 JIA Cheng,ZHU Xun,TIAN Xin,et al.Effect of Initial Glucose Concentration on Glucose Transmembrane Transportation and Metabolism of Hydrogen-Producing Photosynthetic Bacteria[J].Chinese Journal of Applied & Environmental Biology,2010,16(02):264-268.[doi:10.3724/SP.J.1145.2010.00264]
点击复制

胞外初始底物浓度对产氢光合细菌葡萄糖跨膜传输及代谢的影响()
分享到:

《应用与环境生物学报》[ISSN:1006-687X/CN:51-1482/Q]

卷:
16卷
期数:
2010年02期
页码:
264-268
栏目:
研究论文
出版日期:
2010-04-25

文章信息/Info

Title:
Effect of Initial Glucose Concentration on Glucose Transmembrane Transportation and Metabolism of Hydrogen-Producing Photosynthetic Bacteria
文章编号:
200903026
作者:
贾诚朱恂田鑫廖强王永忠谢学旺
(重庆大学工程热物理研究所 重庆 400030)
Author(s):
JIA ChengZHU XunTIAN XinLIAO QiangWANG YongzhongXIE Xuewang
(Institute of Engineering Thermophysics, Chongqing University, Chongqing 400030, China)
关键词:
产氢光合细菌胞内葡萄糖浓度葡萄糖传输速率葡萄糖酶酵解速率葡萄糖渗透系数
Keywords:
hydrogen-producing photosynthetic bacterium intracellular glucose concentration glucose transportation rate glucose glycolysis rate glucose permeability coefficient
分类号:
Q936 : TK91
DOI:
10.3724/SP.J.1145.2010.00264
文献标志码:
A
摘要:
对产氢光合细菌葡萄糖跨膜传输速率、葡萄糖酶酵解速率进行了实验研究,对胞内葡萄糖浓度、葡萄糖传输渗透系数进行了计算. 实验结果表明,胞外初始底物浓度为50~100 mmol/L时,葡萄糖传输速率、胞内葡萄糖浓度总体都随胞外初始底物浓度的增大而增大,但胞外初始底物浓度增大至150 mmol/L时,对葡萄糖跨膜传输产生了限制作用,葡萄糖传输速率和胞内葡萄糖浓度均相应减小;计算得到胞内葡萄糖浓度最小值为0.34 mmol/L,最大为5.87 mmol/L;初始底物浓度为15~35 mmol/L时,细胞破碎液葡萄糖酶酵解速率随底物浓度的增大而增大;胞外初始底物浓度为50~150 mmol/L时,葡萄糖代谢速率受葡萄糖传输速率控制,产氢光合细菌葡萄糖平均渗透系数为231.13 cm3 h-1g(DW)-1,葡萄糖传输速率主要受胞内外葡萄糖浓度势差控制;75 mmol/L为较有利于葡萄糖跨膜传输的最佳胞外初始底物浓度. 图5 参11
Abstract:
The glucose transmembrane transportation rate and glucose glycolysis rate of hydrogen-producing photosynthetic bacteria were investigated, and the intracellular glucose concentration and permeability coefficient of glucose transportation were calculated in this study. The experimental results showed that both the glucose transportation rate and intracellular glucose concentration increased with increasing of extracellular initial glucose concentration which ranged between 50~100 mmol/L, while decreased due to glucose transport limitation when the extracellular initial glucose concentration further increased to 150 mmol/L. The minimum and maximum intracellular glucose concentrations in the experiments were 0.34 mmol/L and 5.87 mmol/L, respectively. For the extracellular initial concentration with a range between 50 and 150 mmol/L, the glucose metabolism rate of the photosynthetic bacteria was controlled by the glucose transport process where the average glucose permeability coefficient was 231.13 cm3 h-1 g(DW)-1. It was found that 75 mmol/L was the best extracellular initial glucose concentration for the glucose transmembrane transportation process. Fig 5, Ref 11

参考文献/References:

1 Levin DB, Pitt L, Love M. Biohydrogen production: Prospects and limitations to practical application. Intern J Hydrogen Energy, 2004, 29 (2): 173~185
2 Das D, Veziroglu TN. Hydrogen production by biological processes: A survey of literature. Intern J Hydrogen Energy, 2001, 26 (1): 13~28
3 Eroglu I, Aslan K, Gunduz U, Yucel M, Turker L. Substrate consumption rates for hydrogen production by Rhodobacter sphaeroides in a column photobioreactor. J Biotechnol, 1999, 70 (1~3): 103 ~113
4 Vrabl P, Mutschlechner W, Burgstaller W. Characteristics of glucose uptake by glucose-NH4-limited grown Penicillium ochrochloron at low, medium and high glucose concentration. Fungal Genetics & Biol, 2008, 45 (10): 1380~1392
5 Rizzi M, Theobald U, Querfurth E, Rohrhirsch T, Baltes M, Reuss M. In vivo investigations of glucose transport in Saccharomyces cerevisiae. Biotechnol & Bioengin, 1996, 49 (3): 316~327
6 Kotyk A, Kleinzeller A. Transport of D-xylose and sugar space in baker’s yeast. Folia Microbiol, 1963, 8 (3): 156~161
7 Wilkins PO, Cirill VP. Sorbose counterflow as a measure of intracellular glucose in baker’s yeast. J Bacteriol, 1965, 90 (6): 1605~1610
8 Wayman FM, Mattey M, Simple diffusion is the primary mechanism for glucose uptake during the production phase of the Aspergillus niger citric acid process. Biotechnol & Bioengin, 1999, 67 (4): 451~456
9 Papagianni M, Mattey M. Modeling the mechanisms of glucose transport through the cell membrane of Aspergillus niger in submerged citric acid fermentation processes. Biochem Engin J, 2004, 20 (1): 7~12
10 Wang YZ (王永忠). Characteristics of mass transfer and hydrogen production of photo-bioreactor with immobilized photosynthetic bacteria: [Doctor’s Degree Dissertation]. Chongqing, China: Chongqing University (重庆: 重庆大学), 2008. 28~31
11 戚以政, 汪叔雄. 生化反应动力学与反应器. 北京: 化学工业出版社, 1996. 20~23

备注/Memo

备注/Memo:
国家自然科学基金项目(Nos. 90510020, 50576107, 20876183, 50825602)资助 Supported by the National Natural Science Foundation of China (Nos. 90510020, 50576107, 20876183, 50825602)
更新日期/Last Update: 2010-04-20