|本期目录/Table of Contents|

[1]刘梅,张宪孔.暹罗鱼腥藻氢代谢的调节[J].应用与环境生物学报,1995,1(02):120-124.
 Liu Mei,Zhang Xiankong.REGULATION OF HYDROGEN NIETABOLISM IN ANABAENA SIAMEMSIS[J].Chinese Journal of Applied & Environmental Biology,1995,1(02):120-124.
点击复制

暹罗鱼腥藻氢代谢的调节()
分享到:

《应用与环境生物学报》[ISSN:1006-687X/CN:51-1482/Q]

卷:
1卷
期数:
1995年02期
页码:
120-124
栏目:
论文
出版日期:
1995-05-25

文章信息/Info

Title:
REGULATION OF HYDROGEN NIETABOLISM IN ANABAENA SIAMEMSIS
作者:
刘梅 张宪孔
中国科学院水生生物研究所 武汉 430072
Author(s):
Liu Mei Zhang Xiankong
Institute of Hydrobiology, Academia Sinica, Wuhan 430072
关键词:
暹罗鱼腥藻氢酶固氮酶氢代谢调节
Keywords:
H2 metabolismnitrogenasehydrogenaseAnabaena siamemsis
摘要:
暹罗鱼腥藻(Anabaena siamemsis)能代谢分子氢,其固氮酶和氢酶的放氢和吸氢均受其生长环境因子的影响。CO2对暹罗鱼腥藻之固氮酶的放氢和氢酶的放氢及吸氢显示不同程度的促进作用。在含5%CO2的空气条件下生长,藻细胞的氢酶放氢和吸氢活位分别为空气条件下的2.5倍和1.3倍;固氮酶的放氢活性为96nmolH2mg-1chl-1h-1,而在空气中生长的细胞则检测不出该活性,培养基中加10mmol/LKNO3和/或10mmol/LNaNO2,对其氢酶放氢活性影响不大,但其需氧吸氢和固氮酶的放氢均明显受到抑制。DCMU和K3Fe(CN)6等抑制剂对氢酶活性有不同程度的影响,一些金属离子对氢酶放氢有刺激作用,其中尤以Ni2+和Mo2+明显。
Abstract:
The activities of hydrogenase and nidrogenase of Anabaena siamemsis were immediatly affected by the cell growth condition.With 5% of CO2 in air-gassing cultures,the activities of both H2-production and uptake of hydrogenase of whole cells were 2.5 and 1.3 times as high as those without CO2 respectivly.The hydrogen production of nitrogenase of the cells growing in 5% of CO2 in air was 96n mol H2 mg-1 chl-1 h-1,but this activity was not obeerved in air-grown cells.The activities of hydrogen uptake O2-dependent and nitrogenase were markedly inhibited by KNO2 and/or NaNO2 in the cultures,but no effect on hydrogen production of hydrogenase was obviously found.The different effects of some inhibitors as DCMU,CCCP and K3Fe(CN)6,and metal ions as Ni2+ and Mo2+ on hydrogen metabolism in A.siamemsis were described.

参考文献/References:

[1] 张宪孔,塔比特FR,范柏林C.固氮蓝藻高光放氢突变仲的筛选和放氢特点.水生生物学报.1986,10(3);217-223
[2] 戴和平,张宽孔.一种海生单细胞蓝藻的氢酶待点和功能探讨.海洋科学.1989,(1):11-15
[3] Adams MWW,Mortenson L E,Chen J S. Hydrogenase. Biochim Biophys Acta. 1981 .594:105-176
[4] Bothe H. HyJrogen production by algae. Experiention. 1982,38:59-64
[5] Candau P,Manzano C,Losada M. Aioconversion of light energy into chemical energy through reduction with water of nitrate to ammonia. Nature. 1976,262;715-717
[6] Fay P. Oxygen relation of nitrogen fixation in cyanobacteria.Mecrobiril RerrieEas. 1992,56(2):3.15,359
[7] Houchins J P. The physiology and biochemistry of hydrogen metabolism in cyanobacteriu. Biochim Biophys Acta.1984,768:227-255
[8] Lex M,Stevart WDP. Algal nitrogenase,reductant pools and photosystem I activity. Buchim Biphys Acta. 1973,292; 436-413
[9] Stults L W , Sray W A, Maier R T. Regulation of hydrogenase biosynthesis by nickel in Bradyrhizubium Juporicm.Arch Mecrobiol.1986,146;280-283
[10] Vaughn S A,Aurgess B K. Nitrite ,a new substrate for nitrogenase. Biochemistry. 1989,28:419-424
[11] Weushaar H,Boger P. Pathways of hydrogen uptake in the cyanobacterium Nostoc muscorarn. Arch Microbiol. 1985,142:349-353
[12] Zhang X K(张宪孔),Tabita F R,Van Aaalen C. Nickel control of Hydrogen praluction and uptake-in Arabacna spp. Strains CA and IF.J Cen Microbiol.1984,130:1813-1818

备注/Memo

备注/Memo:
收稿日期:1994-12-3;接受日期:1995-2-18。
基金项目:国家自然科学基金
更新日期/Last Update: 1900-01-01