|本期目录/Table of Contents|

 LI Linlin,et al..De novo assembly of leaf transcriptome of Lespedeza bicolor (Fabaceae: Papilionoideae) and characterization of expressed sequence tag-derived simple sequence repeats markers[J].Chinese Journal of Applied & Environmental Biology,2018,24(06):1338-1349.[doi:10.19675/j.cnki.1006-687x.2018.01034]





De novo assembly of leaf transcriptome of Lespedeza bicolor (Fabaceae: Papilionoideae) and characterization of expressed sequence tag-derived simple sequence repeats markers
李林霖 高信芬 李诗琦 陈金元 郭丽娜 何海 徐波
1重庆师范大学生命科学学院 重庆 401331 2中国科学院成都生物研究所,中国科学院山地生态恢复与生物资源利用重点实验室 成都 610041 3兰州大学生命科学学院 兰州 730000 4六盘水师范大学生命科学与技术学院 六盘水 553004
LI Linlin et al.
1 College of Life Science, Chongqing Normal University, Chongqing 401331, China 2 CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China 3 College of Life Science, Lanzhou University, Lanzhou 730000, China 4 College of Biological Sciences and Technology, Liupanshui Normal University, Liupanshui 553004, China
Lespedeza bicolor transcriptome functional annotation EST-SSR marker
胡枝子(Lespedeza bicolor)系豆科胡枝子属植物,性耐旱,是防风固沙及水土保持的优良植物. 报道胡枝子的转录组序列,对其进行注释,并开发一系列EST-SSR标记用于进化研究. 主要研究结果如下:(1)采用二代测序技术对胡枝子叶片进行转录组测序,得到120 913 unigenes,其平均长度为608 bp,N50的长度是978 bp.(2)分别在KEGG和KOG等数据库中对unigenes进行注释,总共注释72 613(60.05%)unigenes的功能.(3)筛选识别13 551个潜在的EST-SSR标记;根据重复单位的核苷酸数目以及重复次数的多少,从中选择173个EST-SSR标记进行引物设计.(4)对胡枝子和其他9种近缘种植物进行PCR扩增实验,最后得到56对引物可全部成功扩增出条带并表现出一定的多态性. 本研究获得了较高质量的胡枝子转录组数据库,可进一步用于比较和功能基因组研究以及胡枝子及其近缘类群的基因表达研究;开发的EST-SSR标记将提供一个强大的工具,可用于研究遗传多样性和种群结构、构建DNA指纹图谱数据库、生成遗传图谱、预测分子标记辅助育种和保存遗传信息. (图4 表3 参54 附表1)
Lespedeza bicolor Turcz., which belongs to the family Fabaceae, is a drought-tolerant plant that is helpful for wind prevention, sand fixation, water and soil conservation, and improving ecosystem. However, the plant currently lacks genomic or transcriptomic resources, and few effective expressed sequence tag-derived simple sequence repeat (EST-SSR) markers have been developed. To our knowledge, this is the first study to reveal the transcriptome sequence of this species and annotate the transcriptome and developed a set of EST-SSR markers for evolutionary studies. Approximately 64.76 million clean reads from the leaves of L. bicolor were generated using transcriptome sequencing by using Illumina sequencing technology, and 120 913 unigenes with mean length of 608 bp and N50 of 978 bp were obtained. The function of a total of 72 613 (60.05%) unigenes was annotated, and 25 658 and 28 950 unigenes could be aligned to the KEGG and KOG database, respectively. Search against the Gene Ontology (GO) led to the assignment of 47 561 unigenes to 55 different functional pathway categories, including three major pathways, i.e., biological process, cellular component, and molecular function. In addition, a total of 13 551 potential EST-SSR sites were identified. The EST-SSR sites identified might provide additional resources for developing molecular markers for further evolutionary studies on this species and congeners. The 173 selected EST-SSRs were used to amplify 56 markers with the expected size in L. bicolor and nine other Lespedeza species. The transcriptome dataset reported in this study might serve as an important public information platform for comparative and functional genomic as well as gene expression studies in L. bicolor and other closely related species. These EST-SSR markers provide a powerful tool for assessing the genetic diversity and population structure, constructing a DNA fingerprint database, generating genetic maps, predicting molecular marker-assisted breeding, and preserving genetic information.


1 Huang PH, Hiroyoshi O, Tomoyuki N. Lespedeza Michaux [M]//Wu ZY. Flora of China. Beijing: Science Press & Saint Louis: Missouri Botanical Garden Press, 2010, 10: 302-311
2 Hudson ME. Sequencing breakthroughs for genomic ecology and evolutionary biology [J]. Mol Ecol Resour, 2008, 8: 3-17
3 Strickler SR, Bombarely A, Mueller LA. Designing a transcriptome next-generation sequencing project for a nonmodel plant species [J]. Am J Bot, 2012, 99: 257-266
4 Han XJ, Wang YD, Chen YC, Lin LY, Wu QK. Transcriptome sequencing and expression analysis of terpenoid biosynthesis genes in Litsea cubeba [J]. PLoS ONE, 2013, 8: 1-14
5 Hill C, Cassin A, Keeble-Gagnère G, Doblin M, Bacic A, Roessner U. De novo transcriptome assembly and analysis of differentially expressed genes of two barley genotypes reveal root-zone-specific responses to salt exposure [J]. Sci Rep, 2016, 6: 31558
6 Song LL, Jiang L, Chen Y, Shu YJ, Bai Y, Guo CH. Deep-sequencing transcriptome analysis of field-grown Medicago sativa L. crown buds acclimated to freezing stress [J]. Funct Integr Geno, 2016, 16: 495-511
7 Li DJ, Deng Z, Qin B, Liu XH, Men ZH. De novo assembly and characterization of bark transcriptome using Illumina sequencing and development of EST-SSR markers in rubber tree (Hevea brasiliensis Muell. Arg.) [J]. BMC Genom, 2012, 13: 192
8 Zhao H, Ren LP, Fan XY, Tang KJ, Li B. Identification of putative flavonoid-biosynthetic genes through transcriptome analysis of Taihe Toona sinensis bud [J]. Acta Physiol Plant, 2017, 39 (6): 122
9 Jain M, Pole AK, Singh VK, Ravikumar RL, Garg R. Discovery of molecular markers for Fusarium wilt via transcriptome sequencing of chickpea cultivars [J]. Mol Breed, 2015, 35 (10): 1-8
10 Kant C, Pandey V, Verma S, Tiwari M, Kumar S, Bhatia S. Transcriptome analysis in chickpea (Cicer arietinum L.): applications in study of gene expression, non-coding RNA prediction, and molecular marker development [M]//Marchi FA, Cirillo PDR, Mateo EC. Applications of RNA-Seq and Omics Strategies - From Microorganisms to Human Health. London: InTech, 2017, 10: 245-263
11 Liu ZP, Chen TL, Ma LC, Zhao ZG, Zhao PX, Nan ZB, Wang YR. Global transcriptome sequencing using the Illumina platform and the development of EST-SSR markers in autotetraploid alfalfa [J]. PLoS ONE, 2013, 8 (12): 1-13
12 Du FK, Xu F, Qu H, Feng SS, Tang JJ, Wu RL. Exploiting the transcriptome of euphrates poplar, Populus euphratica (Salicaceae) to develop and characterize new EST-SSR markers and construct an EST-SSR database [J]. PLoS ONE, 2013, 8 (4): 1-11
13 Owusu SA, Staton M, Jennings TN, Schlarbaum S, Coggeshall MV, Romeroseverson J, Carlson JE, Gailing O. Development of genomic microsatellites in Gleditsia triacanthos (Fabaceae) using Illumina sequencing [J]. Appl Plant Sci, 2013, 1 (12): 50-60
14 Fox SE, Geniza M, Hanumappa M, Naithani S, Sullivan C, Preece J, Tiwari VK, Elser J, Leonard JM, Sage A, Gresham C, Kerhornou A, Bolser D, McCarthy F, Kersey P, Lazo GR, Jaiswal P. De novo transcriptome assembly and analyses of gene expression during photomorphogenesis in diploid wheat Triticum monococcum [J]. PLoS ONE, 2014, 9 (5): 1-11
15 Ge XX, Chen HW, Wang HL, Shi AP, Liu KF. De novo assembly and annotation of Salvia splendens transcriptome using the Illumina platform [J]. PLoS ONE, 2014, 9 (3): 1-9
16 Long Y, Wang YY, Wu SS, Wang J, Tian XJ, Pei XW. De novo assembly of transcriptome sequencing in Caragana korshinskii Kom. and characterization of EST-SSR markers [J]. PLoS ONE, 2015, 10 (1): 1-12
17 Li CY, Chiang TY, Chiang YC, Hsu HM, Ge XJ, Huang CC, Chen CT, Hung KH. Cross-species, ampli?able EST-SSR markers for Amentotaxus species obtained by next-generation sequencing [J]. Molecules, 2016, 21 (1): 67
18 Guo LN, Zhao XL, Gao XF. De novo assembly and characterization of leaf transcriptome for the development of EST-SSR markers of the non-model species Indigofera szechuensis Biochem [J]. Syst Ecol, 2016, 68: 36-43
19 Guo Q, Wang JX, Su LZ, Lü W, Sun YH, Li Y. Development and evaluation of a novel set of EST-SSR markers based on transcriptome sequences of black locust (Robinia pseudoacacia L.) [J]. Genes, 2017, 8 (7): 177
20 Grabherr MG, Haas BJ, Yassour M, Levin JZ, Thompson DA, Amit I, Adiconis X, Fan L, Raychowdhury R, Zeng QD, Chen ZH, Mauceli E, Hacohen N, Gnirke A, Rhind N, Palma DF, Birren BW, Nusbaum C, Lindblad-Toh K, Friedman N, Regev A. Full-length transcriptome assembly from RNA-Seq data without a reference genome [J]. Nat Biotechnol, 2011, 29: 644-652
21 Myhre S, Tveit H, Mollestad T, Laegreid A. Additional gene ontology structure for improved biological reasoning [J]. Bioinformatics, 2006, 22: 2020-2027
22 Ye J, Fang L, Zheng HK, Zhang Y, Chen J, Zhang ZJ, Wang J, Li ST, Li RQ, Bolund L, Wang J. WEGO: a web tool for plotting GO annotations [J]. Nucleic Acids Res, 2006, 34: 293-297
23 Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, Davis AP, Dolinski K, Dwight SS, Eppig JT, Harris MA, Hill DP, Issel-Tarver L, Kasarskis A, Lewis S, Matese JC, Richardson JE, Ringwald M, Rubin GM, Sherlock G. Gene ontology: tool for the uni?cation of biology [J]. Nat Genet, 2000, 25: 25-29
24 Conesa A, G?tz S, Garcia-Gomez JM, Terol J, Talon M, Robles M. Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research [J]. Bioinformatics, 2005, 21: 3674-3676
25 Conesa A, G?tz S. Blast2GO: a comprehensive suite for functional analysis in plant genomics [J]. Int J Plant Genom, 2008, 2008: 1-12
26 Chen JH, Tian QQ, Pang T, Jiang LB, Wu RL, Xia XL, Yin WL. Deep-sequencing transcriptome analysis of low temperature perception in a desert tree, Populus euphratica [J]. BMC Genom, 2014, 15: 326
27 Pucholt P, Sjodin P, Weih M, Ronnberg-Wastljung AC, Berlin S. Genome-wide transcriptional and physiological responses to drought stress in leaves and roots of two willow genotypes [J]. BMC Plant Biol, 2015, 15: 244
28 Kumar A, Gaur VS, Goel A, Gupta AK. De novo assembly and characterization of developing spikes transcriptome of ?nger millet (Eleusine coracana): a minor crop having nutraceutical properties [J]. Plant Mol Biol Rep, 2015, 33: 905-922
29 Boutinganache I, Raposo M, Raymond M, Deschepper CF. M13-tailed primers improve the readability and usability of microsatellite analyses performed with two different allele-sizing methods [J]. Biotechniques, 2001, 31 (1): 26
30 Lalitha S. Primer premier 5 [J]. Biotech Softw Internet Rep, 2000, 1: 270-272
31 Garg R, Patel RK, Tyagi AK, Jain M. De novo assembly of chickpea transcriptome using short reads for gene discovery and marker identification [J]. DNA Res, 2011, 18 (1): 53-63
32 Brousseau L, Tinaut A, Duret C, Lang T, Garniergere P, Scotti I. High-throughput transcriptome sequencing and preliminary functional analysis in four neotropical tree species [J]. BMC Genom, 2014, 15 (1): 1-13
33 Patel SS, Shah DB, Panchal HJ. De novo RNA-seq assembly and annotation of Trigonella foenum-graecum L. (SRR066197) [J]. Legume Genom Gene, 2014, 5 (7): 1-7
34 Zhang JN, Liang S, Duan JL, Wang J, Chen SL, Cheng ZS, Zhang Q, Liang XQ, Li YR. De novo assembly and characterisation of the transcriptome during seed development, and generation of genic-SSR markers in peanut (Arachis hypogaea L.) [J]. BMC Genom, 2012, 13 (1): 90
35 Zhu L, Zhang Y, Guo W, Xu XJ, Wang Q. De novo assembly and characterization of Sophora japonica transcriptome using RNA-seq [J]. BioMed Res Int, 2014, 2014 (1): 1-9
36 Torales SL, Rivarola M, Pomponio MF, Gonzalez S, Acu?a CV, Fernández P, Lauenstein DL, Verga AR, Hopp HE, Paniego NB, Poltri SNM. De novo assembly and characterization of leaf transcriptome for the development of functional molecular markers of the extremophile multipurpose tree species Prosopis alba [J]. BMC Genom, 2013, 14 (1): 705
37 Sreeharsha RV, Mudalkar S, Singha KT, Reddy AR. Unravelling molecular mechanisms from floral initiation to lipid biosynthesis in a promising biofuel tree species, Pongamia pinnata using transcriptome analysis [J]. Sci Rep, 2016, 6: 34315
38 Rai MK, Shekhawat JK, Kataria V, Shekhawat NS. De novo assembly of leaf transcriptome, functional annotation and genomic resources development in Prosopis cineraria, a multipurpose tree of Indian Thar Desert [J]. Plant Gene, 2017, 12: 88-97
39 Garg R, Patel RK, Tyagi AK, Jain M. De novo assembly of chickpea transcriptome using short reads for gene discovery and marker identification [J]. DNA Res, 2011, 18 (1): 53-63
40 Liu YL, Zhang PF, Song ML, Hou JL, Qing M, Wang WQ, Liu CS. Transcriptome analysis and development of SSR molecular markers in Glycyrrhiza uralensis Fisch. [J]. PLoS ONE, 2015, 10 (11): 1-12
41 Han S, Wu Z, Wang X, Huang K, Jin Y, Yang WN, Shi HZ. De novo assembly and characterization of Gleditsia sinensis transcriptome and subsequent gene identification and SSR mining [J]. Genet Mol Res, 2016, 15 (1): 1-12
42 Xu L, Wang JB, Lei M, Li L, Fu YL, Wang ZN, Ao MF, Li ZY. Transcriptome analysis of storage roots and fibrous roots of the traditional medicinal herb Callerya speciosa (Champ.) Schot [J]. PLoS ONE, 2016, 11(8): 1-20
43 Zhang Y, Zhang X, Wang YH, Shen SK. De Novo assembly of transcriptome and development of novel EST-SSR markers in Rhododendron rex Lévl. through Illumina sequencing [J]. Front Plant Sci, 2017, 8: 1664
44 Ma XW, Wang P, Zhou SH, Sun Y, Liu NN, Li XN, Hou YX. De novo transcriptome sequencing and comprehensive analysis of the drought-responsive genes in the desert plant Cynanchum komarovii [J]. BMC Genom, 2015, 16 (1): 753
45 Chen JF, Li RH, Xia YS, Bai GH, Guo PG, Wang ZL, Zhang H, Siddique K. Development of EST-SSR markers in flowering Chinese cabbage (Brassica campestris L. ssp. chinensis var. utilis Tsen et Lee) based on de novo transcriptomic assemblies [J]. PLoS ONE, 2017, 12 (9): 1-14
46 Han SM, Wu ZJ, Jin Y, Yang WN, Shi HZ. RNA-Seq analysis for transcriptome assembly, gene identification, and SSR mining in ginkgo (Ginkgo biloba L.) [J]. Tree Genet Genomes, 2015, 11 (3): 37
47 Zhang X, Song ZQ, Liu T, Guo LL, Li XF. De Novo assembly and comparative transcriptome analysis provide insight into lysine biosynthesis in Toona sinensis Roem [J]. Int J Genomics, 2016, 2016 (3): 1-9
48 Ahmad Z, Mumtaz AS, Ghafoor A, Ali A, Nisar M. Marker Assisted Selection (MAS) for chickpea Fusarium oxysporum wilt resistant genotypes using PCR based molecular markers [J]. Mol Biol Rep, 2014, 41: 6755-6762
49 Talukder ZI, Gong L, Hulke BS, Pegadaraju V, Song QJ, Schultz Q, Qi LL. A high-density SNP map of sun?ower derived from RAD-sequencing facilitating ?ne-mapping of the rust resistance gene R12 [J]. PLoS ONE, 2014, 9 (7): 1-14
50 Awasthi P, Singh A, Sheikh G, Mahajan V, Gupta AP, Gupta S, Bedi YS, Gandhi SG. Mining and characterization of EST-SSR markers for Zingiber officinale Roscoe with transferability to other species of Zingiberaceae [J]. Physiol Mol Biol Pla, 2017, 23 (4): 925-931
51 Kim JH, Kyung CI, Kim KM. Construction of a genetic map using EST-SSR markers and QTL analysis of major agronomic characters in hexaploid sweet potato (Ipomoea batatas (L.) Lam) [J]. PLoS ONE, 2017, 12 (10): 1-9
52 Moe KT, Chung JW, Cho YI, Moon JK, Ku JH, Jung JK, Lee J, Park YJ. Sequence information on simple sequence repeats and single nucleotide polymorphisms through transcriptome analysis of mungbean [J]. J Integr Plant Biol, 2011, 53 (1): 63-73
53 Zhang SH, Shi YH, Cheng NN, Du HQ, Fan WN, Wang CZ. De novo characterization of fall dormant and nondormant alfalfa (Medicago sativa L.) leaf transcriptome and identi?cation of candidate genes related to fall dormancy [J]. PLoS ONE, 2015, 10 (3): 1-25
54 Sathyanarayana N, Pittala RK, Tripathi PK, Chopra R, Singh HR, Belamkar V, Bhardwaj PK, Doyle JJ, Egan AN. Transcriptomic resources for the medicinal legume Mucuna pruriens: de novo transcriptome assembly, annotation, identification and validation of EST-SSR markers [J]. BMC Genom, 2017, 18 (1): 409


 MENG Meng,TANG Wei,LIU Jia,et al.Development of EST-SSR markers in Actinidia chinesis cv ‘Hongyang’ based on transcriptomic sequences[J].Chinese Journal of Applied & Environmental Biology,2014,20(06):564.[doi:10.3724/SP.J.1145.2013.12034]
 SUN Jiaolong,FANG Yang,JIN Yanling,et al.Bioinformatic analysis on SSR information in duckweed transcriptome[J].Chinese Journal of Applied & Environmental Biology,2015,21(06):401.[doi:10.3724/SP.J.1145.2014.04027]
 LI Qiang,CHEN Cheng,XIONG Chuan,et al.Bioinformatic analysis of simple sequence repeat (SSR) loci in the Pleurotus eryngii transcriptome[J].Chinese Journal of Applied & Environmental Biology,2017,23(06):454.[doi:2016.05014]
[4]李娜,姚民,梅兰菊,等.基于山桐子转录组序列的SSR分子标记开发[J].应用与环境生物学报,2017,23(05):952.[doi: 10.3724/SP.J.1145.2016.10028]
 LI Na,YAO Min,MEI Lan ju,et al.Development of SSR molecular markers based on transcriptome sequencing of Idesia polycarpa Maxim.[J].Chinese Journal of Applied & Environmental Biology,2017,23(06):952.[doi: 10.3724/SP.J.1145.2016.10028]
[5]李志丹,方扬,靳艳玲,等.少根紫萍转录因子及其营养胁迫下的表达[J].应用与环境生物学报,2018,24(01):97.[doi: 10.19675/j.cnki.1006-687x.2017.04015]
 LI Zhidan,FANG Yang,et al.Transcription factors and their expression in $Landoltia punctata$ under nutrient starvation[J].Chinese Journal of Applied & Environmental Biology,2018,24(06):97.[doi: 10.19675/j.cnki.1006-687x.2017.04015]
 WANG Mingxiu,LUAN Wei,et al.Responses of starch biosynthesis-related genes to nutrition starvation in Landoltia punctata[J].Chinese Journal of Applied & Environmental Biology,2019,25(06):128.[doi:10.19675/j.cnki.1006-687x.2018.04021]
 MIAO Pu,GOU Min,CHEN Dong & TANG Yueqin,et al.Genome-wide evaluation of constitutive and inducible promotors in Saccharomyces cerevisiae utilizing different carbon sources[J].Chinese Journal of Applied & Environmental Biology,2019,25(06):1185.[doi:10.19675/j.cnki.1006-687x.2019.07015]
 FANG Zhizhen,JIANG Cuicui,et al.Analysis of the ARF gene family of ‘Sanyueli’ plum (Prunus salicina Lindl.) and its red-fleshed mutant based on transcriptome[J].Chinese Journal of Applied & Environmental Biology,2019,25(06):1388.[doi:10.19675/j.cnki.1006-687x.2019.0502]
 GU Mengya,WANG Pengjie,JIN Shan,et al.Effects of different red LED light intensities on phenylpropanoid metabolism of tea plants based on transcriptomics[J].Chinese Journal of Applied & Environmental Biology,2021,27(06):1636.[doi:10.19675/j.cnki.1006-687x.2020.06047]
 LUO Yong,WEN Beibei,CHEN Yan,et al.Identification and expression analysis of OMT genes related to O-methylated EGCG biosynthesis in Camellia Sinensis[J].Chinese Journal of Applied & Environmental Biology,2022,28(06):26.[doi:10.19675/j.cnki.1006-687x.2021.07030]

更新日期/Last Update: 2018-12-25