|Table of Contents|

Chemical properties and extracellular enzymatic activity in the rhizosphere soil of Abies fabri at different altitudes on Mount Gongga(PDF)

Chinese Journal of Applied & Environmental Biology[ISSN:1006-687X/CN:51-1482/Q]

Issue:
2021 05
Page:
1138-1146
Research Field:
Articles
Publishing date:

Info

Title:
Chemical properties and extracellular enzymatic activity in the rhizosphere soil of Abies fabri at different altitudes on Mount Gongga
Author(s):
NING Peng CHENG Xiaomao YANG Xiaofeng & HUANG Xiaoxia?
Southwest Landscape Architecture Engineering Research Center of State Forestry and Grassland Administration, College of Landscape and Horticulture, Southwest Forestry University, Kunming 650224, China
Keywords:
altitude gradient Abies fabri soil chemical property microbial biomass rhizospheric extracellular enzyme
CLC:
-
PACS:
DOI:
10.19675/j.cnki.1006-687x.2020110620
DocumentCode:

Abstract:
This study investigated the vertical distribution pattern of soil chemical properties, microbial biomass (MBC, MBN, and MBP), and extracellular enzyme activities in the rhizosphere of Abies fabri (Mast.) Craib on Gongga Mountain, aiming to provide a theoretical basis for the protection and restoration of the subalpine ecosystem in the western Sichuan region of China. The rhizospheres of Abies fabri at five altitudes, 2 800 m (A1), 3 000 m (A2), 3 200 m (A3), 3 500 m (A4), and 3 800 m (A5), on Gongga Mountain were selected as the research object in this study. They were analyzed in terms of their soil chemical properties, microbial biomass, and the activity of extracellular enzymes (acid phosphatase (AP), polyphenol oxidase (PPO), peroxidase (PER)) and their influencing factors. Results showed that (1) the soil water content (SM) and levels of soluble organic carbon (DOC), total nitrogen (TN), and nitrate nitrogen (NO3--N) first decreased and then increased with increases in altitude; the maximum was at altitude A1 and the turning point was at altitude A3; the total phosphorus (TP) and available phosphorus (AVP) levels increased with increasing altitude. The N/P ratios at A1, A2, and A3 were higher than the mean N/P ratios of terrestrial ecosystems in China, indicating that phosphorus was scarce in the study area. (2) The MBC/MBN ratio ranged from 1–3, indicating that soil humification and carbon sequestration capacities were weak in this study area. The MBC/MBP and MBN/MBP ratios were significantly higher at A1 than at other altitudes, indicating that phosphorus was more deficient at the latter. (3) The activities of AP and PPO decreased with increase in altitude and were closely related to the TN content while the activity of the PER enzyme was not significantly affected by altitude; the activities of all three enzymes were the highest at A1. In summary, the chemical properties, microbial biomass, and extracellular enzyme activities of the rhizosphere of Abies fabri were significantly different at different altitudes. TN is a key factor affecting changes in soil enzyme activity along the altitude gradient. Soil nutrient content was the highest at the lowest altitude, 2 800 m; however, it was more susceptible limits in phosphorus at this altitude than at others.

References

1 曹慧, 孙辉, 杨浩, 孙波, 赵其国. 土壤酶活性及其对土壤质量的指示研究进展[J]. 应用与环境生物学报, 2003, 9 (1): 105-109 [Cao H, Sun H, Yang H, Sun B, Zhao QG. A review soil enzyme activity and its indication for soil quality [J]. Chin J Appl Environ Biol, 2003, 9 (1): 105-109]
2 Schimel JP, Bennett J. Nitrogen mineralization: challenges of a changing paradigm [J]. Ecology, 2004, 85 (3): 591-602
3 Hill BH, Elonen CM, Seifert LR, May AA, Tarquinio E. Microbial enzyme stoichiometry and nutrient limitation in us streams and rivers [J]. Ecol Indic, 2012, 18: 540-551
4 自海云, 姜永雷, 程小毛, 王鸿东, 黄晓霞. 千家寨不同海拔野生古茶树根际土壤微生物胞外酶活性特征[J]. 应用与环境生物学报, 2020, 26 (5): 1087-1095 [Zi HY, Jiang YL, Cheng XM, Wang HD, Huang XX. Microbial extracellular enzyme activity in rhizosphere soil of ancient wild tea tree at different altitudes in Qianjiazhai Reserve [J]. Chin J Appl Environ Biol, 2020, 26 (5): 1087-1095]
5 马剑, 刘贤德, 金铭, 赵维俊, 成彩霞, 孟好军, 武秀荣. 祁连山青海云杉林土壤理化性质和酶活性海拔分布特征[J]. 水土保持学报, 2019, 33 (2): 207-213 [Ma J, Liu XD, Jin M, Cheng CX, Meng HJ, Wu XR. Soil physicochemical properties and enzyme activities along the altitudinal gradients in Picea Crassifolia of Qilian Mountains [J]. J Soil Water Conser, 2019, 33 (2): 207-213]
6 李聪, 吕晶花, 陆梅, 任玉连, 杜凡, 陶海, 杨罗平, 王东旭. 滇东南典型常绿阔叶林土壤酶活性的海拔梯度特征[J]. 林业科学研究, 2020, 33 (6): 170-179 [Li C, Lü JH, Lu M, Ren YL, Du F, Tao H, Yang LP, Wang DX. Variations of soil enzyme activity in typical evergreen broadleaved forests along altitude gradient in southeast Yunnan [J]. Sci Silv Sin, 2020, 33 (6): 170-179]
7 金裕华, 汪家社, 李黎光, 阮宏华, 徐自坤, 韩凌云. 武夷山不同海拔典型植被带土壤酶活性特征[J]. 生态学杂志, 2011, 30 (9): 1955-1961 [Jin YH, Wang JS, Li NG, Ruan HH, Xu ZK, Han LY. Soll enzyme activities in typical vegetation Zones along an altitude gradient in Wuyi Mountains [J]. Chin J Ecol, 2011, 30 (9): 1955-1961]
8 Bulgarelli D, Garrido RO, Münch P, Weiman A, Dr?ge J, Pan Y, Mchardy A, Schulze LP. Structure and function of the bacterial root microbiota in wild and domesticated barley [J]. Cell Host Microb, 2015, 17 (3): 392-403
9 Fierer N, Mccain CM, Meir P, Zimmermann M, Rapp JM, Silman MR, Knight R. Microbes do not follow the elevational diversity patterns of plants and animals [J]. Ecology, 2011, 92 (4): 797-804
10 Gaston KJ. Global patterns in biodiversity[J]. Nature, 2000, 405 (6783): 220-227
11 Margesin R, Minerbi S, Schinner F. Long-term monitoring of soil microbiological activities in two forest sites in south tyrol in the Italian alps [J]. Microb Environ, 2014, 29 (3): 277-285
12 高甲荣, 王敏, 毕利东, 牛健植, 张东升. 贡嘎山不同年龄结构峨眉冷杉林粗木质残体的贮存量及其特征[J]. 中国水土保持科学, 2003 (2): 47-51 [Gao JR, Wang M, Bi LD, Niu JZ, Zhang DS. Storage amount and characteristics of coarse woody debris in Abies fabri forests in different age stages at the Gongga Mountains [J]. Sci Soil Water Cons, 2003 (2): 47-51]
13 张元媛, 朱万泽, 孙向阳, 胡兆永. 川西贡嘎山峨眉冷杉成熟林生态系统CO2通量特征[J]. 生态学报, 2018, 38 (17): 6125-6135 [Zhang YY, Zhu WZ, Sun XY, Hu ZY. Carbon dioxide flux characteristics in an Abies fabri mature forest on Gongga mountain, Sichuan, China [J]. Acta Ecol Sin, 2018, 38 (17): 6125-6135]
14 陈艳艳, 黄轩, 黄晓霞, 程小毛. 贡嘎山不同海拔峨眉冷杉叶片生态解剖结构特性研究[J]. 西南林业大学学报(自然科学), 2020, 40 (6): 160-165 [Chen YY, Huang X, Huang XX, Cheng XM. An eco-anatomical study on Abies fabri leaves at gradient elevation in Gongga Mountain [J]. J SW For Univ, 2020, 40 (6): 160-165]
15 刘颖. 川西高寒山地不同海拔梯度土壤养分分布特征[D]. 成都: 四川农业大学, 2018 [Liu Y. Soil nutrient distribution characteristics at different altitudinal gradients in the high and cold mountainous region of western Sichuan [D]. Chengdu: Sichuan Agricultural University, 2018]
16 殷晖, 关文彬, 薛肖肖, 谢春华. 贡嘎山暗针叶林林冠对降雨能量再分配的影响研究[J]. 北京林业大学学报, 2010, 32 (2): 1-5 [Yin H, Guan WB, Xue XX, Xie CH. Redistribution of rainfall energy by canopy of dark coniferous forests in Gongga Mountain, southwestern China [J]. J Beijing For Univ, 2010, 32 (2): 1-5
17 Li W, Yang G, Chen H, Tian J, Zhang Y, Zhu Q, Peng C, Yang J. Soil available nitrogen, dissolved organic carbon and microbial biomass content along altitudinal gradient of the eastern slope of Gongga Mountain [J]. Acta Ecol Sin, 2013, 33 (5): 266-271
18 郭璐璐, 李安迪, 商宏莉, 孙守琴. 川西贡嘎山不同森林生态系统土壤有机碳垂直分布与组成特征[J]. 中国农业气象, 2018, 39 (10): 636-643 [Guo LL, Li WD, Shang HL, Sun SQ. Total and labile organic carbon in soils of three subalpine forest types in Gongga mountain western Sichuan [J]. Chin J Agrometeorol, 2018, 39 (10): 636-643]
19 何清清, 邴海健, 吴艳宏, 王吉鹏, 周俊, 孙宏洋, 祝贺. 海螺沟冰川退缩区土壤元素分布特征及影响因素[J]. 山地学报, 2017, 35 (5): 698-708 [He QQ, Bing HJ, Wu YH, Wang JP, Zhou J, Sun HY, Zhu H. Distribution characteristics and influencing factors of soil elements in the retreated area of Hailuogou Glacier, SW China [J]. J Mount Sci, 2017, 35 (5): 698-708]
20 何晓丽, 吴艳宏, 周俊, 邴海健, 孙宏洋. 贡嘎山东坡亚高山土壤生物有效磷的时空分异[J]. 土壤学报, 2018, 55 (6): 1502-1512 [He XL, Wu YH, Zhou J, Bing HJ, Sun HY. Spatial and temporal distribution of bioavailable phosphorus in the subalpine soil on the eastern slope of Gongga Mountain [J]. Acta Pedol Sin, 2018, 55 (6): 1502-1512]
21 周育臻, 吴鹏飞. 贡嘎山东坡森林小型土壤节肢动物群落多样性与时空分布[J]. 生态学杂志, 2020, 39 (2): 586-599 [Wu YZ, Wu PF. Diversity and spatiotemporal distribution of soil microarthropod comunities in forests on the eastern slope of Gongga Mountain [J]. Acta Ecol Sin, 2020, 39 (2): 586-599]
22 王晓胡, 寇涌苹, 赵文强, 严贤春. 贡嘎山森林土壤氨氧化微生物数量在海拔梯度的空间分异特征[J]. 应用与环境生物学报, 2019, 25 (2): 275-280 [Wang XH, Kou YP, Zhao WQ, Yan XC. Spatial heterogeneity of ammonia-oxidizing microorganisms along the elevation gradient in the forest soil of Mount Gongga [J]. Chin J Appl Environ Biol, 2019, 25 (2): 275-280]
23 李超男, 李家宝, 李香真. 贡嘎山海拔梯度上不同植被类型土壤甲烷氧化菌群落结构及多样性[J]. 应用生态学报, 2017, 28 (3): 805-814 [Li CN, Li JB, Li XZ. Soil methanotrophic community structure and diversity in different vegetation types at elevation gradient of Gongga Mountain, southwest China [J]. Chin J Appl Environ Biol, 2017, 28 (3): 805-814]
24 冉飞, 梁一鸣, 杨燕, 杨阳, 王根绪. 贡嘎山雅家埂峨眉冷杉林线种群的时空动态[J]. 生态学报, 2014, 34 (23): 6872-6878 [Ran F, Liang YM, Yang Y, Yang Y, Wang GX. Spatial-temporal dynamics of an Abies fabri population near the alpine treeline in the Yajiageng area of Gongga Mountain, China [J]. Acta Ecol Sin, 2014, 34 (23): 6872-6878]
25 赵广, 刘刚才, 朱万泽. 贡嘎山峨眉冷杉树干呼吸空间特征及其对温度的响应[J]. 生态学报, 2018, 38 (8): 2732-2742 [Zhao G, Liu GC, Zhu WZ. Spatial variations in the stem CO2 efflux rate of Abies fabri and the response to temperature in the Gongga Mountains [J]. Acta Ecol Sin, 2018, 38 (8): 2732-2742]
26 王琳, 欧阳华, 周才平, 张锋, 白军红, 彭奎. 贡嘎山东坡土壤有机质及氮素分布特征[J]. 地理学报, 2004 (6): 1012-1019 [Wang L, Ou YH, Zhou CH, Zhang F, Bai JH, Peng K. Distribution characteristics of soil organic matter and nitrogen on the eastern slope of Mt. Gongga [J], Acta Geog Sin, 2004 (6): 1012-1019]
27 Debnath R, Yadav A, Gupta VK, Singh BP, Handique PJ, Saikia R. Rhizospheric bacterial community of endemic Rhododendron arboreum sm. ssp. delavayi along eastern Himalayan slope in Tawang [J]. Front Plant Sc, 2016, 7: 10.3389/fpls.2016.01345
28 鲁如坤. 土壤农业化学分析方法[M]. 北京: 中国农业科技出版社, 1999 [Lu RK. Methods of Soil Agricultural Chemical Analysis [M]. Beijing: China Agricultural Science and Technology Press, 1999]
29 Tian H, Chen G, Zhang C, Melillo JM, Hall CAS. Pattern and variation of C:N:P ratios in China’s soils: a synthesis of observational data [J]. Biogeochemistry, 2010, 98 (1): 139-151
30 林佳慧. 不同林分类型土壤水分及物理性质对比研究[D]. 广州: 华南农业大学, 2016 [Lin JH. Soil moisture and physical properties of different stand types [D]. Guangzhou: South China Agricultural University, 2016]
31 李丹维, 王紫泉, 田海霞, 和文祥, 耿增超. 太白山不同海拔土壤碳、氮、磷含量及生态化学计量特征[J]. 土壤学报, 2017, 54 (1): 160-170 [Li DW, Wang ZQ, Tian HX, He WX, Gen ZC. Carbon, nitrogen and phosphorus contents in soils on Taibai Mountain and their ecological stoichiometry relative to elevation [J]. Acta Pedol Sin, 2017, 54 (1): 160-170]
32 Yang YS, G JF, Liu YL, Lin RY, Chen GS. Composition and properties of soil humus in a mixed forest of Cunninghamia lanceolata and Tsoongiodendron odorum [J]. J For Res, 2002, 13 (1): 33-36
33 Zhang M, Zhang X, Liang W, Jiang Y, Dai G, Wang X, Han S. Distribution of soil organic carbon fractions along the altitudinal gradient in Changbai Countain, China [J]. Pedosphere, 2011, 21 (5): 615-620
34 Chen X, Li B. Change in soil carbon and nutrient storage after human disturbance of a primary Korean pine forest in northeast China [J]. For Ecol Manag, 2003, 186 (1): 197-206
35 Walker T, Syers J. The fate of phosphorus during pedogenesis [J]. Geoderma, 1976, 15 (1): 1-19
36 Redfield AC. The biological control of chemical factors in the environment [J]. Am Sci, 1958, 46 (3): 221-230
37 李新星, 刘桂民, 吴小丽, 纪庚好, 李莉莎, 毛楠, 徐海燕, 吴晓东. 马衔山不同海拔土壤碳、氮、磷含量及生态化学计量特征[J]. 生态学杂志, 2020, 39 (3): 758-765 [Li XX, Liu GM, Wu XL, Ji GH, Li LS, Mao N, Xu HY, Wu XD. Elevational distribution of soil organic carbon, nitrogen and phosphorus contents and their ecological stoichiometry on Maxian Mountain [J]. Acta Ecol Sin, 2020, 39 (3): 758-765]
38 De NS, Hartmann R, Hofman G. Temperature effects on n mineralization: changes in soil solution composition and determination of temperature coefficients by TDR [J]. Eur J Soil Sci, 2003, 54 (1): 49-62
39 王平, 付战勇, 李絮花, 刘敏, 刘文博. 腐植酸对土壤氮素转化及氨挥发损失的影响[J]. 中国土壤与肥料, 2018, 276 (4): 28-33 [Wang P. Fu ZY, Li XH, Liu M, Liu WB. The influence of humic acid on so?nitrogen transformation and ammonia?volatillization losses [J]. Soil Fertil Sci Chin, 2018, 276 (4): 28-33]
40 Lang M, Cai Z, Mary B, Hao X, Chang S. Land-use type and temperature affect gross nitrogen transformation rates in Chinese and Canadian soils [J]. Plant Soil, 2010, 334 (1): 377-389
41 陈静, 李玉霖, 冯静, 苏娜, 赵学勇. 温度和水分对科尔沁沙质草地土壤氮矿化的影响[J]. 中国沙漠, 2016, 36 (1): 103-110 [Chen J, Li YL, Feng J, Su N, Zhao XY. Links of temperature and moisture with soil nitrogen mineralization in the Horqin sandy grassland [J]. J Des Res, 2016, 36 (1): 103-110]
42 Zhou X, Chen C, Wang Y, Xu Z, Duan J, Hao Y, Smaill S. Soil extractable carbon and nitrogen, microbial biomass and microbial metabolic activity in response to warming and increased precipitation in a semiarid inner Mongolian grassland [J]. Geoderma, 2013, 206: 24-31
43 张莎莎. 杉木人工林凋落物—土壤—土壤微生物量碳氮磷生态化学计量特征的海拔梯度变化[D]. 合肥: 安徽农业大学, 2019 [Zhang SS. Ecological stoichiometry of carbon, nitrogen and phosphorus in litter-soil-soil microbial biomass of Cunninghamia llanceolata plantations across an elevation gradient [D]. Hefei: Anhui Agricultural University, 2019]
44 Bailey V, Smith J, Bolton H. Fungal-to-bacterial ratios in soils investigated for enhanced C sequestration [J]. Soil Biol Biochem, 2002, 34 (7): 997-1007
45 刘放, 吴明辉, 魏培洁, 贾映兰, 陈生云. 疏勒河源高寒草甸土壤微生物生物量碳氮变化特征[J]. 生态学报, 2020, 40 (18): 6416-6426 [Liu F, Wu MH, Wei PJ, Chen SY. Variations of soil microbial biomass carbon and nitrogen in alpine meadow of the Shule River headwater region [J]. Acta Ecol Sin, 2020, 40 (18): 6416-6426]
46 胡宗达, 刘世荣, 刘兴良, 胡璟, 罗明霞, 李亚非, 石松林, 吴德勇, 肖玖金. 川西亚高山天然次生林不同演替阶段土壤-微生物生物量及其化学计量特征[J]. 生态学报, 2021, 41 (12): 1-14 [Hu ZD, Liu SR, Liu XL, Hu J, Luo MX, Li YF, Shi SL, Wu DY, Jiu JJ, Soil and soil microbial biomass contents and C:N:P stoichiometry at different succession stages of natural secondary forest in sub-alpine area of western Sichuan China [J]. Acta Ecol Sin, 2021, 41 (12): 1-14]
47 王宁, 杨雪, 李世兰, 王楠楠, 韩冬雪, 冯富娟. 不同海拔红松混交林土壤微生物量碳、氮的生长季动态[J]. 林业科学, 2016, 52 (1): 150-158 [Wang N, Yang X, Li SL, Wang NN, Han DX, Feng FJ. Seasonal dynamics of soil microbial biomass carbon nitrogen in the Korean pine mixed forests along elevation gradient [J]. Sci Silv Sin, 2016, 52 (1): 150-158]
48 Moore JM, Klose S, Tabatabai MA. Soil microbial biomass carbon and nitrogen as affected by cropping systems [J]. Biol Fert Soils, 2000, 31 (3): 200-210
49 赵盼盼, 周嘉聪, 林开淼, 张秋芳, 袁萍, 曾晓敏, 苏莹, 徐建国, 陈岳民, 杨玉盛. 海拔梯度变化对中亚热带黄山松土壤微生物生物量和群落结构的影响[J]. 生态学报, 2019, 39 (6): 2215-2225 [Zhao PP, Zhou JC, Lin KM, Zhang QF, Yuan P, Zeng XM, Su Y, Xu JG, Chen YM, Yang YS. Effect of different altitudes on soil microbial biomass and community structure of Pinus taiwanensis forest in mid-subtropical zone [J]. Acta Ecol Sin, 2019, 39 (6): 2215-2225]
50 赵娟. 雪被厚度和土壤基质对土壤微生物生物量含量及化学计量比的影响[D]. 哈尔滨: 东北林业大学, 2016 [Zhao J, Effects of snow depth and soil substrate on soil microbial biomass content and their stoichiometry [D]. Harbin: Northeast Forestry University, 2016]
51 刘雄, 罗超, 向元彬, 肖永翔, 周世兴, 铁烈华, 胡峻嶍, 韩博涵, 黄世平, 黄从德. 模拟降水量变化对华西雨屏区天然常绿阔叶林土壤酶活性的影响[J]. 应用与环境生物学报, 2020, 26 (3): 635-642 [Liu X, Luo C, Xiang YB, Xiao YX, Zhou SX, Tie LH, Hu JZ, Han BH, Huang SP, Huang CD. Effects of simulated precipitation changes on soil enzyme activities in a natural, evergreen, broad-leaf forest in the rainy area of western China [J]. Chin J Appl Environ Biol, 2020, 26 (3): 635-642]
52 王晶苑, 张心昱, 温学发, 王绍强, 王辉民. 氮沉降对森林土壤有机质和凋落物分解的影响及其微生物学机制[J]. 生态学报, 2013, 33 (5): 1337-1346 [Wang JY, Zhang XY, Wen XF, Wang XQ, Wang HM. The effect of nitrogen deposition on forest soil organic matter and litter decompostion and the microbial mechanism [J]. Acta Ecol Sin, 2013, 33 (5): 1337-1346]
53 Marklein A, Houlton B. Nitrogen inputs accelerate phosphorus cycling rates across a wide variety of terrestrial ecosystems [J]. New Phytol, 2011, 193: 696-704
54 Li C, Li C, Zhang H, Liao H, Wang X. The purple acid phosphatase gmpap 21 enhances internal phosphorus utilization and possibly plays a role in symbiosis with rhizobia in soybean [J]. Physiol Plant, 2017, 159: 215-227
55 Ma ZL, Zhao W, Liu M, Liu Q. Responses of soil respiration and its components to experimental warming in an alpine scrub ecosystem on the eastern Qinghai-Tibet plateau [J]. Sci Total Environ, 2018, 643: 1427-1435
56 马志良, 赵文强, 刘美. 高寒灌丛生长季根际和非根际土壤多酚氧化酶和过氧化氢酶活性对增温的响应[J]. 应用生态学报, 2019, 30 (11): 3681-3688 [Ma ZL, Zhao WQ, Liu M, Liu Q. Effects of warming on microbial biomass carbon and nitrogen in the rhizosphere and bulk soil in an alpine scrub ecosystem [J]. Chin J App Ecol, 2019, 30 (6): 1893-1900]
57 Freeman C, Ostle N, Kang H. An enzymic ‘latch’ on a global carbon store [J]. Nature, 2001, 409 (6817): 149

Memo

Memo:
-
Last Update: 2021-10-25