|Table of Contents|

Nutrient composition and microbial communities of bamboo at Wolong?National?Nature Reserve(PDF)

Chinese Journal of Applied & Environmental Biology[ISSN:1006-687X/CN:51-1482/Q]

Issue:
2021 05
Page:
1210-1217
Research Field:
Articles
Publishing date:

Info

Title:
Nutrient composition and microbial communities of bamboo at Wolong?National?Nature Reserve
Author(s):
JIN Lei1# HE Yongguo2# YANG Xiaojun3 DENG Wenwen2 YANG Lin1 JIANG Chengyi1 LI Bei1 LI Caiwu2 ZHOU Yu2 ZENG Wen2 LI Ti2 HUANG Yan2 ZHANG Hemin2 ZHOU Shiqiang2 & ZOU Likou1?
1 College of Resources, Sichuan Agricultural University, Chengdu 611130, China 2 Key Laboratory of State Forestry and Grassland Administration on Conservation Biology of Rare Animals in the Giant Panda National Park, China Conservation and Research Center for the Giant Panda (CCRCGP), Dujiangyan 611830, China 3 Wolong Special Administrative Region of Sichuan Province, Wolong 623004, China
Keywords:
Wolong giant panda bamboo nutrition composition microbiota
CLC:
-
PACS:
DOI:
10.19675/j.cnki.1006-687x.2020.08039
DocumentCode:

Abstract:
The giant panda is the flagship animal of the Wolong National Nature Reserve, which includes a high cover of many bamboo species in their diet. This study used chemical experiments and high-throughput ?sequencing to investigate the nutrition provided by and microbiota composition of the four main diet bamboo species preferred by giant pandas in Wolong.?The results showed that cellulose (46.18 ± 2.50% to 56.82 ± 2.2%), hemicellulose (11.74 ± 2.00% to 23.03 ± 2.74%), and lignin (15.29 ± 3.31% to 22.53 ± 6.0%) were the main components of bamboo, and no significant differences were found among hemicellulose and lignin between bamboo species (P > 0.05, Kruskal–Wallis test). The concentration of cellulose, flavone, and protein varied remarkably (P < 0.05, Kruskal–Wallis test) among different species of bamboo. The bacterial richness and fungal richness and diversity in different bamboo species fluctuated markedly (P < 0.05, Kruskal–Wallis test). Proteobacteria and Pseudomonas were the predominant bacterial phylum and genus at 81.3% and 26.2%, respectively. The abundances of Proteobacteria and Pseudomonas (86.2% and 33.9%, respectively) in Yushania brevipaniculata were significantly higher than those in the other groups (LDA > 4). Ascomycota was the most abundant fungal phylum in Phyllostachys bissetii (84.8%), Fargesia robusta (48.8%), and Bashania fangiana (48.8%), while Basidiomycota (37.7%) was the major fungal phylum in Y. brevipaniculata (60.4%). Cryptococcus (28.0%) was the predominant fungal genus in P. bissetii (56.4%), Y. brevipaniculata (57.4%), and B. fangiana (42.6%) while Rachicladosporium (11.0%) was the predominant fungal genus in F. robusta. In summary, our results indicate that different bamboo species provide significantly different levels of nutrition and have significantly different microbiota compositions. This research provides suggestions for the choice of bamboo species to be fed to captive giant pandas.

References

1 Chen D, Li C, Feng L, Zhang ZZ, Zhang HM, Cheng GY, Li DS, Zhang GQ, Wang HN, ChenYX, Feng MF, Wang CD, Wu HL, Deng LH, Ming H, Yang X. Analysis of the influence of living environment and age on vaginal fungal microbiome in giant pandas (Ailuropoda melanoleuca) by high throughput sequencing [J]. Microb Pathog, 2017, 115 (2018): 280-286
2 Wei F, Fang Z, Peng Z, Chang F, Xiao YZ. Evidence for lignin oxidation by the giant panda fecal microbiome [J]. PLoS ONE, 2012, 7 (11): e50312
3 Williams CL, Willard S, Kouba A, Sparks D, Holmes W, Falcone J, Williams CH, Brown A. Dietary shifts affect the gastrointestinal microflora of the giant panda (Ailuropoda melanoleuca) [J]. J Anim Physiol An N, 2013, 97 (3): 577-585
4 Evans JM, Morris LS, Marchesi JR. The gut microbiome: the role of a virtual organ in the endocrinology of the host [J]. J Endocrinol, 2013, 218 (3): 37-47
5 Tun HM, Mauroo NF, Chan SY, John CWH, Mabel TW, Leung FC. Microbial diversity and evidence of novel homoacetogens in the gut of both geriatric and adult giant pandas (Ailuropoda melanoleuca) [J]. PLoS ONE, 2014, 9 (1): e79902
6 Zhernakova A, Kurilshikov A, Bonder MJ, Tigchelaar F, Schirmer M, Vatanen T, Falony G, Sara VS, Wang J, Imhann F, Brandsma, Soesma AJ, Marie J, Marie CC, Deelen P, Swertz MA. Population-based metagenomics analysis reveals markers for gut microbiome composition and diversity [J]. Science, 2016, 352 (6285): 565
7 Kuda T, Yokota Y, Shikano A, Moemi T, Hajime T, Bon K. Dietary and lifestyle disease indices and caecal microbiota in high fat diet, dietary fibre free diet, or DSS induced IBD models in ICR mice [J]. J Funct Foods, 2017, 35: 605-614
8 高凤. 奶牛肠道微生物群落结构与多样性研究[D]. 河北: 河北工程大学, 2017 [Gao F. The study on intestinal microbial community structure and diversity of dairy cows [D]. Hebei: Hebei University of Engineering, 2017]
9 Frese SA, Parker K, Calvert CC, Mills DA. Diet shapes the gut microbiome of pigs during nursing and weaning [J]. Microbiome, 2015, 3 (1): 28
10 Bolnick DI, Snowberg K, Hirsch PE, Lauber CL, Knight R, Caporaso JG, Svanback R, Post D. Individuals’ diet diversity influences gut microbial diversity in two freshwater fish (threespine stickleback and Eurasian perch) [J]. Eco Lett, 2014, 17 (8): 979-987
11 Wu Q, Wang X, Ding Y, Hu YB, Nie YG, Wei W, Ma S, Yan L, Zhu LF, Wei FW. Seasonal variation in nutrient utilization shapes gut microbiome structure and function in wild giant pandas [J]. Proc Biol Sci, 2017, 284 (1862): 20170955
12 Jin L, Wu D, Li C, Zhang AY, Xiong YW, Wei RP, Zhang GQ, Yang SZ, Deng WW, Li T, Li B, Pan X, Zhang ZZ, Huang Y, Zhang HM, He YG, Zou LK. Bamboo nutrients and microbiome affect gut microbiome of giant panda [J]. Symbiosis, 2020, 80: 293-304
13 潘红丽, 李迈和, 田雨, 蔡小虎, 何飞, 贾程, 樊华, 刘兴良. 卧龙自然保护区油竹子形态学特征及地上部生物量对海拔梯度的响应[J]. 四川林业科技, 2008, 29 (3): 34-40 [Pan HL, Li MH, Tian Y, Cai XH, He F, Jia C, Fan H, Liu XL. Responses of the morphological peculiarities and above-ground biomass of fargesia angustissima to the altitudinal gradients in Wolong nature reserve [J]. J Sichuan For Sci Technol, 2008, 29 (3): 34-40]
14 周世强, 黄金燕, 张亚辉, 李德生, 黄炎, 周小平, 王鹏彦, 张和民. 卧龙自然保护区大熊猫栖息地植物群落多样性Ⅴ: 不同竹林的物种多样性[J]. 应用与环境生物学报, 2009, 15 (2): 30-37 [Zhou SQ, Huang JY, Zhang YH, Li DS, Huang Y, Zhou XP, Wang PY, Zhang HM. Diversity of plant community of giant panda’s habitat in the Wolong Nature Reserve Ⅴ: species diversity in different bamboo forests [J]. Chi J Appl Environ Biol, 2009, 15 (2): 30-37]
15 文冠一. 卧龙地区大熊猫的栖息环境及种群分布规律[J]. 阿坝科技, 1997, 18 (2): 57-61 [Wen GY. The habitation and distribution of giant panda in Wolong [J]. ABA Technol, 1997, 18 (2): 57-61]
16 Schaller GB, Hu JC, Pan WS. The giant panda of Wolong [M]. Chicago: University of Chicago Press, 1985
17 付其如, 王安群. 卧龙自然保护区竹类微量元素研究[J]. 竹子学报, 1990, 9 (4): 83-94 [Fu QR, Wang AQ. Study on the trace element content in bamboo in Wolong natural reserve [J]. J Bamboo Res, 1990, 9 (4): 83-94]
18 周世强, 黄金燕. 卧龙自然保护区冷箭竹林的初步研究[J]. 四川林业科技, 1998, 19 (2): 1-6 [Zhou SQ, Huang JY. A study of arrow bamboo(Bashania fangiana) forest in Wolong nature reserve [J]. J Sichuan For Sci Technol, 1998, 19 (2): 1-6]
19 何永果, 晋蕾, 李果, 李才武, 李蓓, 李伟, 张亚辉, 胡正泉, 黄炎, 张和民, 邹立扣. 基于高通量测序技术研究成年大熊猫肠道菌群[J]. 应用与环境生物学报, 2017, 23 (5): 771-777 [He YG, Jin L, Li G, Li CW, Li B, Li W, Zhang YH, Hu ZQ, Huang Y, Zhang HM, Zou LK. Gut microbiome of adult giant pandas based on high-throughput sequencing technology [J]. Chin J Appl Environ Biol, 2017, 23 (5): 771-777]
20 Bond SL, Timsit E, Workentine M, Alexander T, Léguillette R. Upper and lower respiratory tract microbiota in horses: bacterial communities associated with health and mild asthma (inflammatory airway disease) and effects of dexamethasone [J]. BMC Microbiol, 2017, 17 (1): 184
21 Masella AP, Bartram AK, Truszkowski JM, Brown DG, Neufeld JD. PANDAseq: paired-end assembler for illumina sequences [J]. BMC Bioinform, 2012, 13 (1): 31-40
22 Rognes T, Flouri T, Nichols B, Quince C, Mahé F. VSEARCH: A versatile open source tool for metagenomics [J]. PeerJ, 2016, 4 (10): e2584
23 Lan Y, Qiong W, Cole J, Rosen GL, Gilbert JA. Using the RDP classifier to predict taxonomic novelty and reduce the search space for finding novel organisms [J]. PLoS ONE, 7 (3): e32491
24 晋蕾, 周应敏, 李才武, 吴代福, 李果, 何永果, 李蓓, 黄炎, 张和民, 邹立扣. 野化培训与放归、野生大熊猫肠道菌群的组成和变化 [J]. 应用与环境生物学报, 2019, 25 (2): 344-350 [Jin L, Zhou YM, Li CW, Wu DF, Li G, He YG, Li B, Huang Y, Zhang HM, Zou LK. Composition and variation of gut microbiome of trained, preparatory reintroduced, reintroduced and wild giant pandas [J]. Chin J Appl Environ Biol, 2019, 25 (2): 344-350]
25 朱华, 肖冲, 尚海泉, 郭亚茜, 杜晓鹏, 秦川. 基于高通量测序的不同年龄恒河猴肠道菌群结构差异分析[J]. 中国实验动物学报, 2019, 27 (1): 78-84 [Zhu H, Xiao C, Shang HQ, Guo YQ, Du XP, Qin C. Analysis of gut microbiomes of rhesus macaques of different ages by high-throughput sequencing [J]. Acta Lab Anim Sci Sin, 2019, 27 (1): 78-84]
26 Lope CT, Max F, Farzana K, Donaldson SL, Morris Q, Bader GD. Cytoscape Web: an interactive web-based network browser [J]. Bioinformatics, 2010, 18: 18
27 Knott KK, Christian AL, Falcone JF, Vance CK, Kouba AJ. Phenological changes in bamboo carbohydrates explain the preference for culm over leaves by giant pandas (Ailuropoda melanoleuca) during springpone [J]. PLoS ONE, 2017, 12 (6): e0177582
28 Hoyer S. The effect of age on glucose and energy metabolism in brain cortex of rats [J]. Archives Gerontol Geriatrics, 1985, 4 (3): 193-203
29 Zhu LF, Wu Q, Dai J, Zhang S, Wei FW. Evidence of cellulose metabolism by the giant panda gut microbiome [J]. PNAS, 2011, 108 (43): 17714-17719
30 Zhang W, Liu W, Hou R, Zhang L, Schmitz-Esser S, Sun HB, Xie JJ, Zhang YF, Wang CD, Li LF, Yue BS, Huang H, Wang HR, Shen FJ, Zhang ZZ. Age-associated microbiome shows the giant panda lives on hemicelluloses, not on cellulose [J]. ISME J, 2018, 12 (5): 1319-1328
31 Zhang X, Xu C, Wang H. Pretreatment of bamboo residues with Coriolus versicolor for enzymatic hydrolysis [J]. J Biosci Bioeng, 2007, 104 (2): 149-151
32 Ramakrishnan U, Grant F, Goldenberg T, Amanda Z, Reynaldo M. Effect of women’s nutrition before and during early pregnancy on maternal and infant outcomes: a systematic review [J]. Paediatr Perinat Epidemiol, 2012, Suppl 1: 285-301
33 Wang L, Yuan S, Nie Y, Zhao JG, Cao X, Dai Y, Zhang ZJ, Wei FW. Dietary flavonoids and the altitudinal preference of wild giant pandas in foping national nature reserve, China [J]. Glob Ecol Conserv, 2020, 22: e00981
34 Liu H, Zhang C, Liu Y, Duan HJ. Total flavonoid contents in bamboo diets and reproductive hormones in captive pandas: exploring the potential effects on the female giant panda (Ailuropoda melanoleuca) [J]. Conserv Physiol, 2019, 7: 1-10
35 蒋英芝, 贺连华, 刘建军. 蛋白质功能研究方法及技术[J]. 生物技术通报, 2009, 9: 38-43 [Jiang YZ, He LH, Liu JJ. The methods and technologies for protein function study [J]. Biotechnol Bull, 2009, 9: 38-43]
36 Liu F, Yuan Z, Zhang X, Zhang GF, Xie BG. Characteristics and diversity of endophytic bacteria in moso bamboo (Phyllostachys edulis) based on 16S rDNA sequencing [J]. Archives Microbiol, 2017, 199 (4): 1-8
37 赵官成, 梁健, 淡静雅, 王静, 秦源, 张武会. 土壤微生物与植物关系研究进展[J]. 西南林业大学学报, 2011, 31 (1): 83-88 [Zhao GC, Liang J, Dan JY, Wang J, Qin Y, Zhang WH. Review of studies on relationship between soil microbes and plants [J]. J SW For Coll, 2011, 31 (1): 83-88]
38 张德明, 陈章和. 白云山土壤微生物的季节变化及其对环境污染的反应[J]. 生态科学, 1998, 17 (1): 40-45 [Zhang DM, Chen ZH. Seasonal variation of soil microbes and its reaction to environment pollution [J]. Ecol Sci, 1998, 17 (1): 40-45]
39 章家恩, 刘文高, 朱丽霞. 广东省不同地区土壤微生物数量状况初步研究[J]. 生态科学, 2002, 21 (3): 223-225 [Zhang JE, Liu WG, Zhu LX. Preliminary study on the soil microbial biodiversity status in different areas of Guangdong province[J]. Ecol Sci, 2002, 21 (3): 223-225]
40 张雨凡. 龙泉山土壤微生物功能群数量变化及其与土壤环境的关系[D]. 成都: 四川师范大学, 2013 [Zhang YF. The changes in the amount of soil microbial functional groups in Longquan mountain and the relationship with the soil environment [D]. Chengdu: Sichuan Normal University, 2013]
41 Wu GD, Chen J, Hoffmann C, Kyle B, James DL. Linking long-term dietary patterns with gut microbial enterotypes [J]. Science, 2011, 334 (6052): 105-108
42 Guo W, Mishra S, Wang C, Zhang HM, Li Y. Comparative study of gut microbiota in wild and captive giant pandas (Ailuropoda melanoleuca) [J]. Genes, 2019, 10 (10): 827
43 Schmidt E, Mykytczuk N, Schulte-hostedde AI. Effects of the captive and wild environment on diversity of the gut microbiome of deer mice (Peromyscus maniculatus) [J]. ISME J, 2019, 13 (5): 1293-1305
44 Lin YT, Chiu CY. Elevation gradient of soil bacterial communities in bamboo plantations [J]. Bot Studies, 2016, 57 (1): 8
45 杨瑞娟, 王桥美, 季爱兵. 勃氏甜龙竹活体竹汁成分及微生物的研究[J]. 竹子研究汇刊, 2016, 35 (3): 15-21 [Yang RJ, Wang QM, Ji AB. Components and microorganisms in juice from living Dendrocalamus brandisii (Munro) Kurz [J]. J Bamboo Res, 2016, 35 (3): 15-21]
46 桂许维, 张扬, 宋庆妮, 陈欢欢, 杨清培, 栾丰刚. 毛竹林钾矿物分解细菌的分离与鉴定[J]. 森林与环境学报, 2018, 38 (4): 117-123. [Gui XW, Zhang Y, Song QN, Chen HH, Yang QP, Luo FG. Isolation and identification of the mineral potassium-solubilizing bacteria in Phyllostachys edulis forest [J]. J For Environ, 2018, 38 (4): 117-123]
47 胡萌. 植物内生细菌研究进展[J]. 山东农业大学学报(自然科学版) [J], 2008, 39 (1): 151-154 [Hu M. Recent advances on endophyte research [J]. J Shandong Agric Univ, 2008, 39 (1): 151-154]
48 Yao R, Yang Z, Zhang Z,Hu T, Hua C, Feng H, Gu XD, Yang XY, Lu GQ, Zhu LF.Are the gut microbial systems of giant pandas unstable? [J]. Heliyon, 2019, 5 (9): e02480
49 Helander M, Huttu O, Sieber TN,Jia J, Niemel P, Saikkonen P. Endophytic fungi and silica content of different bamboo species in giant panda diet [J]. Symbiosis, 2013, 61 (1): 13-22
50 Zhou YK, Shen XY, Hou CL. Diversity and antimicrobial activity of culturable fungi from fishscale bamboo (Phyllostachys heteroclada) in China [J]. World J Microbiol Biotechnol, 2017, 33 (6): 104
51 Wei F, Wang X, Wu Q. The giant panda gut microbiome [J]. Trends in Microbiol, 2015, 23 (8): 450-452
52 何苑皞, 周国英, 王圣洁, 李河. 杉木人工林土壤真菌遗传多样性[J]. 生态学报, 2013, 34 (10): 2725-2736 [He YH, Zhou GY, Wang SJ, Li H. Fungal diversity in cunninghamia lanceolata plantation soil [J]. Acta Ecol Sin, 2013, 34 (10): 2725-2736]
53 赵兴丽, 卯婷婷, 张金峰, 孟泽洪, 李帅, 周玉锋. 不同品种茶树根际土壤真菌群落多样性及结构特征[J]. 茶叶通讯, 2019, 3: 284-290 [Zhao XL, Mao TT, Zhang JF, Meng ZH, Li S, Zhou YF. Diversity and structural characteristics of fungi community in rhizospheres soil of different varieties of camellia sinensis [J]. J Tea Commum, 2019, 3: 284-290]
54 杨立宾, 隋心, 朱道光, 崔福星, 李金博, 宋瑞清, 倪红伟.大兴安岭兴安落叶松林土壤真菌群落特征研究[J]. 中南林业科技大学学报, 2017, 37 (12): 76-84 [Yang LB, Sui X, Zhu DG, Cui FX, Li JB, Song RQ, Ni HW. Study on fungal communities’ characteristics of different Larix gmelini forest types in cold temperate zone [J]. J Centr S Univ For Technol, 2017, 37 (12): 76-84]
55 Hannula SE, Zhu F, Heinen R. Foliar-feeding insects acquire microbiomes from the soil rather than the host plant [J]. Nat Comm, 2019, 10 (1): 1254
56 吴建峰, 林先贵. 土壤微生物在促进植物生长方面的作用[J]. 土壤, 2019, 21: 86-87 [Wu JF, Lin XG. Effects of soil microbes on plant growth [J]. Soils, 2019, 21: 86-87]

Memo

Memo:
-
Last Update: 2021-10-25