|Table of Contents|

Chemical constituents of the endophytic fungus Fusarium proliferatum from Ligusticum chuanxiong Hort. (PDF)

Chinese Journal of Applied & Environmental Biology[ISSN:1006-687X/CN:51-1482/Q]

Issue:
2021 05
Page:
1318-1325
Research Field:
Articles
Publishing date:

Info

Title:
Chemical constituents of the endophytic fungus Fusarium proliferatum from Ligusticum chuanxiong Hort.
Author(s):
KUANG Qixuan1 TAN Lu1 LUO Yu2 FENG Dan1 ZHOU Yu1 GUO Dale1 REN Bo1? & DENG Yun1?
1 Key Laboratory of Standardization of Chinese Herbal Medicine of Ministry of Education, State Key Laboratory Breeding of Systematic Research Development and Utilization of Chinese Medical Resources, Co-founded by Sichuan Province and Ministry of Science and Technology, Pharmacy Department, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China 2 School of Pharmacy, Southwest Medical University, Luzhou 646000, China
Keywords:
Ligusticum chuanxiong Hort. endophytic fungus Fusarium proliferatum chemical constituent cytotoxicity
CLC:
-
PACS:
DOI:
10.19675/j.cnki.1006-687x.2020.06069
DocumentCode:

Abstract:
This study examined the secondary metabolites of the endophytic fungus Fusarium proliferatum from Ligusticum chuanxiong Hort. and their cytotoxicity against three tumor cell lines. Twenty-three compounds were isolated and purified from the ethyl acetate extract of the fermentation broth via column chromatography, medium-pressure reversed-phase silica gel column chromatography, preparative HPLC, and other methods. Their structures were elucidated based on comprehensive spectroscopic analyses. The compounds were identified as follows: 7-oxo-β-Sitosterol (1), 7-oxo-β-stigmasterol (2), ergosterol peroxide (3), 9,11-dehydroergosterol peroxide (4), 5α,6α-epoxy-3β-hydroxyergosta-22-ene-7-one (5), 5α,6α-epoxy-3β,8β,14α-Trihydroxy-5α-ergost-22E-en-7-one (6), 3β-hydroxy-(22E,24R)-ergosta-5,8,22-trien-7-one (7), (4S,17R)-4-hydroxy-17-methylincisterol (8), (3β,5α,6β,22E)-ergosta-7,22-diene-3,5,6-triol (9), beauvericin (10), 4-hydroxybenzaldehyde (11), cyclo-(L-prolyl-L-glycine) (12), cyclo-(Gly-D-Phe) (13), cyclo-(2-hydroxy-Pro-Gly) (14), cyclo-(L-Phe-Ala) (15), 9-octadecenoic acid (Z)-,2’,3’-dihydroxypropyl ester (16), cyclo-(8α-hydroxy-D-prolyl-L-phenylalanine) (17), cyclo-(8β-hydroxy-L-prolyl-D-phenylalanine) (18), cyclo-(8α-hydroxy-L-prolyl-L-phenylalanine) (19), cyclo-(L-Pro-L-Leu) (20), cyclo-(L-Pro-D-Phe) (21), cyclo-(L-Pro-L-Phe) (22), and bassiatin (23). The MTT method was used to evaluate the cytotoxicity of compounds 1–7 and 10 against the MV4-11, HCT116, and HGC-27 cell lines. The results showed that compounds 3 and 5 demonstrated inhibitory activity against the MV4-11 cell lines, with IC50 values of 31.73 ± 2.08 and 14.81 ± 1.89 μmol/L, respectively. Compounds 4 and 10 showed significant inhibitory activity against the MV4-11, HCT116, and HGC-27 cell lines; the IC50 values of compound 4 were 22.87 ± 2.41, 29.58 ± 1.96 and 48.85 ± 2.05 μmol/L, respectively, while those for compound 10 were 4.94 ± 1.17, 3.81 ± 1.62 and 10.06 ± 1.49 μmol/L, respectively. The compounds isolated were mainly steroids and cyclic dipeptides. Compounds 1–9, 13–15, and 17–22 were isolated from the fermentation of Fusarium proliferatum for the first time. Studies of the diversity of the chemical structure of the secondary metabolites of F. proliferatum has been expanded to include research exploring the mechanism of interaction between Ligusticum chuanxiong Hort and endophytic fungi based on the transmission of chemical signals.

References

1 王红阳, 康传志, 张文晋, 周良云, 万修福, 吕朝耕, 黄璐琦, 刘大会, 郭兰萍. 中药生态农业发展的土地利用策略[J]. 中国中药杂志, 2020, 45 (9): 1990-1995 [Wang HY, Kang CZ, Zhang WJ, Zhou LY, Wan XF, Lv CG, Huang LQ, Liu DH, Guo LP. Land use strategy of ecological agriculture of Chinese materia medica in future development [J]. Chin J Chin Mater Med, 2020, 45 (9): 1990-1995]
2 Uzma F, Mohan CD, Hashem A, Konappa NM, Rangappa S, Kamath PV, Singh BP, Mudili V, Gupta VK, Siddaiah CN, Chowdappa S, Alqarawi AA, Abd Allah EF. Endophytic fungi-alternative sources of cytotoxic compounds: a review [J]. Front Pharmacol, 2018, 9 (12): 309]
3 张晓伟, 张栋. 镰孢菌属真菌次生代谢产物的研究进展[J]. 植物生理学报, 2013, 49 (3): 201-216 [Zhang XW, Zhang D. Recent advances of secondary metabolites in genus Fusarium [J]. J Plant Physiol, 2013, 49 (3): 201-216]
4 Ksenija N, Snezana I, Vladimir N. Reviews of Environmental Contamination and Toxicology [M]. New York: Springer International Publishing Switzerland, 2014: 101-120
5 Dame ZT, Silima B, Gryzenhout M, van Ree T. Bioactive compounds from the endophytic fungus Fusarium proliferatum [J]. Nat Prod Res, 2016, 30 (11): 1301-1304
6 Rocha AD, Vieira HD, Takahashi JA, Boaventura MAD. Synthesis of a new allelopathic agent from the biotransformation of ent-15α-hydroxy-16-kauren-19-oic acid with Fusarium proliferatum [J]. Nat Prod Res, 2017, 31 (22): 2647-2653
7 Silva TL, Toffano L, Fernandes JB, Silva MFDF, de Sousa LRF, Vieira PC. Mycotoxins from Fusarium proliferatum: new inhibitors of papain-like cysteine proteases [J]. Braz J Microbiol, 2020, DOI: 10.1007/s42770-020-00256-7
8 李佳穗. 川芎根腐病调查与病原菌的鉴定研究[D]. 成都: 成都中医药大学, 2016 [Li JH. Research into root rot disease of Ligusticum chuanxiong Hort.: Investigation of the incidence and identification of the fugal pathogens [D]. Chengdu: Chengdu University of Traditional Chinese Medicine, 2016]
9 王海, 严铸云, 何冬梅 ,王萌. 多产区川芎内生真菌菌群组成的PCR-DGGE分析[J]. 中国中药杂志, 2013, 38 (12): 1893-1897 [Wang H, Yan ZY, He DM, Wang M. Analysis of endophytic fungi community of Ligusticum chuanxiongusing PCR-DGGE [J]. Chin J Chin Mater Med, 2013, 38 (12): 1893-1897]
10 曹钰镁, 金梦莹, 谭璐, 罗禹, 胡靖文, 赵佳佳, 郭大乐, 邓赟. 川芎内生菌Fusarium tricinctum的化学成分[J]. 应用与环境生物学报, 2020, 26 (2): 294-298 [Cao YM, Jin MY, Tan L, Luo Y, Hu JW, Zhao JJ, Guo DL, Deng Y. Chemical constituents of the endophytic fungus Fusarium tricinctum from Ligusticum chuanxiong Hort. [J]. ChinJ Appl Environ Biol, 2020, 2020, 26 (2): 294-298]
11 冯茜, 何苗, 黄云, 范巧佳, 万英. 川芎根腐病的症状及病原鉴定[J]. 植物保护学报, 2008, 35 (4): 377-378 [Feng Q, He M, Huang Y, Fan QJ, Wan Y. Symptoms of root rot on Ligusticum chuanxiong and identification of its pathogen [J]. J Plant Protec, 2008, 35 (4): 377-378]
12 Chen T, Nomura K, Wang XL, Sohrabi R, Xu J, Yao LY, Paasch BC, Ma L, Kremer J, Cheng YT, Zhang L, Wang N, Wang ET, Xin XF, H SY. A plant genetic network for preventing dysbiosis in the phyllosphere [J]. Nature, 2020, 580 (7805): 653
13 Li XH, Han XH, Qin LL, He JL, Cao ZX, Gu YC, Guo DL, Deng Y. Isochromanes from Aspergillus fumigatus, an endophytic fungus from Cordyceps sinensis [J]. Nat Prod Res, 2019, 33 (13): 1870-1875
14 Pettit GR, Numata A, Cragg GM, Herald DL, Takada T, Iwamoto C, Riesen R, Schmidt JM, Doubek DL, Goswami A. Isolation and structures of schleicherastatins 1-7 and schleicheols 1 and 2 from the teak forest medicinal tree Schleichera oleosa [J]. J Nat Prod, 2000, 63 (1): 72-78
15 魏建国, 杨大松, 杨永平, 王云月, 李晓莉. 草鞋木的化学成分研究[J]. 天然产物研究与开发, 2014, 26 (11): 1789-1792 [Wei JG, Yang DS, Yang YP, Wang YY, Li XL. Chemical constituents of Macaranga henryi [J]. Nat Prod Res Dev, 2014, 26 (11): 1789-1792]
16 Niu XM, Li SH, Peng LY, Lin ZW, Rao GX, Sun HD. Constituents from Limonia crenulate[J]. J Asian Nat Prod Res, 2001, 63 (3): 299-311.
17 Kim KH, Choi SU, Park KM, Seok SJ, Lee KR. Cytotoxic constituents of Amanita subjunquillea [J]. Arch Pharm Res, 2008, 5 (31): 579-586
18 廖金华, 胡旭佳, 苑春茂, 何红平, 邸迎彤. 马槟榔果实的化学成分研究[J]. 天然产物研究与开发, 2014, 26 (11): 1780-1784 [Liao JH, Hu XJ, Yuan CM, He HP, Di YT. Chemical constituents from the fruits of Capparis masaikai [J]. Nat Prod Res Dev, 2014, 26 (11): 1780-1784]
19 Chen HL, Chiang HC. Constituents of fruit bodies of Tramete orientalis [J]. J Chin Chem Soc, 1995, 42 (1): 97-100
20 Chang CI, Hsu CM, Li TS, Huang SD, Lin CC, Yen CH, Chou CH, Cheng HL. Constituents of the stem of Cucurbita moschata exhibit antidiabetic activities through multiple mechanisms [J]. J Funct Foods, 2014, 10: 260-273
21 金一平, 杨志钧, 罗敏玉. 植物内生真菌炭角菌属HCCB03890代谢产物及生物活性的研究[J]. 中国药学杂志, 2015, 21 (50): 1853-1856 [Jin YP, Yang ZJ, Luo MY. Metabolites of endophytic fungus Xylaria sp. with biological activities[J]. Chin Pharm J, 2015, 21 (50): 1853-1856]
22 Gao H, Hong K, Zhang X, Liu HW, Wang NL, Zhuang L, Yao XS, New steryl esters of fatty acids from the mangrove fungus Aspergillus awamori [J]. Helv Chim Acta , 2007, 90 (6): 1165-1178
23 Gupta S, Krasnoff SB, Underwood NL, Renwick JAA, Roberts DW. Isolation of beauvericin as an insect toxin from Fusarium semitectum and Fusarium moniliforme var. subglutinans [J]. Mycopathologia, 1991, 115 (3): 185-189
24 郭怀宇, 王国凯, 刘吉开, 王刚. 微酸多年卧孔菌化学成分的研究[J]. 中成药, 2018, 40 (1): 129-133 [Guo HY, Wang G, Liu JK, Wang G. Chemical constituents from Perenniporia subacida [J]. Chin Tradit Pat Med, 2018, 40 (1): 129-133]
25 Trigos A, Reyna S, Cervantes L. 3 Diketopiperazines from the cultivated fungus Fusarium-oxysporum [J]. Nat Prod Lett, 1995, 6 (4): 241-246
26 李冬, 朱伟明, 顾谦群, 崔承彬, 朱天骄, 刘红兵, 方玉春. 海洋放线菌H2003代谢产物中环二肽成分及其抗肿瘤活性的初步研究[J]. 海洋科学, 2007, 5: 45-48 [Li D, Zhu WM, Gu QQ, Cui CB, Zhu TJ, Liu HB, Fang YC. Structural identification and anti-tumor activity of Diketopiperazines from secondary metabolites of marine-derived actinomycete H2003 [J]. Mar Sci, 2007, 5: 45-48]
27 Yan BF, Fang ST, Li WZ, Liu SJ, Wang JH, Xia CH. A new minor diketopiperazine from the sponge-derived fungus Simplicillium sp. YZ-11[J]. Nat Prod Res, 2015, 29 (21): 2013-2017
28 Xue JH, Wu M. Cyclic Dipeptides from Streptomyces michiganensis [J]. Chem Nat Compd, 2015, 51 (2): 395-396
29 游桂红, 张怡评, 洪专, 刘斌. 皱瘤海鞘化学成分研究[J]. 中国海洋药物, 2017, 36 (1): 83-86 [You GH, Zhang YP, Hong Z, Liu B. Studies on the chamical constituents of Styela plicata [J]. Chin J Mar Drug, 2017, 36 (1): 83-86]
30 De Rosa S, Mitova M, Tommonaro G. Marine bacteria associated with sponge as source of cyclic peptides [J]. Biomol Eng, 2003, 1 (4-6): 311-316
31 Chen XQ, Mou YH, Ling JH, Wang N, Wang X, Hu JC. Cyclic dipeptides produced by fungus Eupenicillium brefeldianum HMP-F96 induced extracellular alkalinization and H2O2 production in tobacco cell suspensions [J]. World J Microbiol Biotechnol, 2015, 1 (31): 247-253
32 Li L, Yang M, Luo J, Qu Q, Chen Y, Liang LM, Zhang, KQ. Nematode-trapping fungi and fungus-associated bacteria interactions: the role of bacterial diketopiperazines and biofilms on Arthrobotrys oligospora surface in hyphal morphogenesis [J]. Environ Microbiol, 2016, 18 (11): 3827-3839
33 Ye XW, Chai WY, Lian XY, Zhang ZZ. Novel propanamide analogue and antiproliferative diketopiperazines from mangrove Streptomyces sp Q24 [J]. Nat Prod Res, 2013, 31 (2): 355-364
34 Kumar N, Mohandas C, Nambisan B, Kumar DRS, Lankalapalli RS. Isolation of proline-based cyclic dipeptides from Bacillus sp N strain associated with rhabitid entomopathogenic nematode and its antimicrobial properties [J]. World J Microbiol Biotechnol, 2013, 31 (2): 355-364
35 Xie CL, Niu SW, Xia JM, Peng K, Zhang GY, Yang XW. Saccharopolytide A, a new cyclic tetrapeptide with rare 4-hydroxy-proline moieties from the deep-sea derived actinomycete Saccharopolyspora cebuensis MCCC 1A09850 [J]. World J Microbiol Biotechnol, 2013, 32 (14): 1627-1631
36 曲承蕾, 杨雪, 张淑敏, 谢则平, 金海珠. 海洋源放线菌Streptomyces sp.223中二酮哌嗪类成分的研究[J]. 中国海洋药物, 2015, 34 (3): 23-28 [Qu CL, Yang X, Zhang SM, Xie ZP, Jin HZ. Study of diketopiperazines from the marine-derived Streptomyces sp.223 [J]. Chin J Mar Drug, 2015, 34 (3): 23-28]
37 侯春晓, 殷颖, 齐秋月, 宋红生, 王成树. 蝉虫草(蝉花)来源的化合物鉴定与抗菌活性检测[J]. 菌物学报, 2018, 37 (12): 1688-1694 [Hou CX, Yin Y, Qi QY, Song HS, Wang CS. Identification and antimicrobial assays of the bioactive components isolated from the medicinal fungus Cordyceps cicadae [J]. Mycosystema, 2018, 37 (12): 1688-1694]
38 李向敏. 皱盖假芝和灵芝孢子中甾醇类化合物抗肿瘤作用机制研究[D]. 广州: 华南理工大学, 2015 [Li XM. Anti-tumor effect and mechanisms of sterols from Amauroderma rude and Ganoderma lucidum spore [D]. Guangzhou: South China University of Technology, 2015]
39 Olleik H, Nicoletti C, Lafond M, Courvoisier-Dezord E, Xue PW, Hijazi A, Baydoun E, Perrier J , Maresca M. Comparative structure-activity analysis of the antimicrobial activity, cytotoxicity, and mechanism of action of the fungal cyclohexadepsipeptides enniatins and beauvericin [J]. Toxins, 2019, 11 (9): 514
40 Meerungrueang W, Panichayupakaranant P. Antimicrobial activities of some Thai traditional medical longevity formulations from plants and antibacterial compounds from Ficus foveolata [J]. Pharm Biol, 2014, 52 (9): 1104-1109
41 Deng Q, Li G, Sun MY, Yang XB, Xu J. A new antimicrobial sesquiterpene isolated from endophytic fungus Cytospora sp. from the Chinese mangrove plant Ceriops tagal [J]. Nat Prod Res, 2020, 24 (10): 1404-1408
42 Tang HY, Zhang Q, Li H, Gao JM. Antimicrobial and allelopathic metabolites produced by Penicillium brasilianum [J]. Nat Prod Res, 2015, 29 (4): 345-348
43 Wang QG, Xu LJ. Beauvericin, a bioactive compound produced by fungi: a short review [J]. Molecules, 2012, 17 (3): 345-348
44 Youssef FS, Ashour ML, Singab ANB, Wink M. A comprehensive review of bioactive peptides from marine fungi and their biological significance [J]. Mar Drugs, 2019, 17 (10): 559

Memo

Memo:
-
Last Update: 2021-10-25