|Table of Contents|

Effects of cadmium treatment on plant-pollinator interactions(PDF)

Chinese Journal of Applied & Environmental Biology[ISSN:1006-687X/CN:51-1482/Q]

2021 05
Research Field:
Publishing date:


Effects of cadmium treatment on plant-pollinator interactions
LIU Jia XIAO Youlu DAI Wenfei DUAN Jinfeng & MU Junpeng?
Ecological Security and Protection Key Laboratory of Sichuan Province, Mianyang Normal University, Mianyang 621000, China
plant-animal interaction pollination ecology environmental changing reproduction success

Variations in floral traits that respond to environmental changes have been shown as correlating with pollinator foraging behavior. However, it is still unknown how cadmium stress affects floral traits and in turn influences pollinator foraging behavior. We conducted an experiment to explore the effects of cadmium stress on plant-pollinator interactions. Cadmium stress was administered at four levels (0, 2, 4, and 8 mg/kg). Our results demonstrated that the volume of nectar in flowers increased significantly after treatment with 4 mg/kg of cadmium, an increase of 44.8% compared to the treatment with 0 mg/kg. However, the concentration of nectar decreased significantly, by 21.0%, after treatment 8 mg/kg. Flower number and corolla diameter were significantly higher with the 0 mg/kg treatment compared to the others, increasing by 18.3% and 28.2%, respectively. Flower life span, however, decreased insignificantly by 4.7% with the treatments compared to the treatment with 0 mg/kg. Furthermore, cadmium stress significantly decreased the plant biomass and insect visitation rate (by 14.1% and 30.0%, respectively), but increased non-structural carbohydrates (by 25.8%) in Capsicum annuum leaves. There was an insignificant difference in fruiting rate among the cadmium treatments. Model selection results suggest that cadmium stress increase the volume and concentration of nectar; however, these variations decrease insect visitation rates. Our study shows that the abundance of flower rewards does not seem to be determined by pollinator species and density; Instead, heavy metals in nectar or pollen may adversely affect pollinator populations.


1 Montoya JM, SOL? RV. Small world patterns in food webs [J]. J Theor Biol, 2002, 214 (3): 405-412
2 Kearns CA, Inouye DW, Waser NM. Endangered mutualisms: the conservation of plant-pollinator interaction [J]. Annu Rev Ecol Syst, 1996, 29 (1): 83-112
3 Renner SS, Newbery DM, Prins HHT. Effects of habitat fragmentation on plant pollinator interactions in the tropics [J]. Blackwell Sci, 1998, 339-360
4 Klein AM, Vaissière BE, Cane JH, Steffan-Dewenter I, Cunningham SA, Kremen C, Tcharntke T. Importance of pollinators in changing landscapes for world crops [J]. P Roy Soc B-Biol Sci, 2007, 274 (1608): 303-313
5 Lautenbach S, Seppelt R, Liebscher J, Dormann CF. Spatial and temporal trends of global pollination benefit [J]. PLoS ONE, 2012, 7 (4): e35954
6 田瑜, 兰存子, 徐靖, 李秀山, 李俊生. IPBES框架下的全球传粉评估及我国对策[J]. 生物多样性, 2016, 24 (9): 1084-1090 [Tian Y, Lan CZ, Xu J, Li XS, Li JS. Assessment of pollination and China’s implementation strategies within the IPBES framework [J]. Biodiv Sci, 2016, 24 (9): 1084-1090]
7 Lázaro A, Hegland SJ, Totland ?. The relationships between floral traits and specificity of pollination systems in three Scandinavian plant communities [J]. Oecologia, 2008, 157 (2): 249-257
8 Barrett SCH. Harder LD. Ecology and evolution of Plant mating [J]. Trends Ecol Evol, 1996, 11 (2): 73-79
9 黄双全, 郭友好. 传粉生物学的研究进展[J]. 科学通报, 2000 (3): 225-237 [Huang SQ, Guo YH, Research Advances on the Pollination Biology [J]. Chin Sci Bull, 2000 (3): 225-237]
10 Mu JP, Yang YL, Luo YL, Su RJ, Niklas KJ. Pollinator preference and pollen viability mediated by flower color synergistically determine seed set in an Alpine annual herb [J]. Ecol Evol, 2017, 7 (9): 2947-2955
11 黄双全. 植物与传粉者相互作用的研究及其意义[J]. 生物多样性, 2007, 15 (6): 569-575 [Huang SQ. Studies on plant–pollinator interaction and its significances [J]. Biodiv Sci, 2007, 15 (6): 569-575]
12 Darwin C. On the Various Contrivances by Which British and Foreign Orchids Are Fertilized Insects, and on the Good Effects of Intercrossing [M]. London: John Murray, 1862: 31-45
13 Martén-Rodríguez S, Fenster CB, Agnarsson I, Skog LE, Zimmer EA. Evolutionary breakdown of pollination specialization in a Caribbean plant radiation [J]. New Phytol, 2010, 188: 403-417
14 Menéndez R. How are insects responding to global warming [J]. Tijdschr Entomol, 2007, 150 (2): 356-365
15 Mu JP, Peng YH, Xi XQ, Wu XW, Li GY, Niklas KJ, Su RJ. Artificial asymmetric warming reduces nectar yield in a Tibetan alpine species of Asteraceae [J]. Ann Bot-London, 2015, 116 (6): 899-906
16 王颖洁, 路宁娜, 杨洁羽, 丁天凤, 赵志刚. 气候变暖对植物、传粉者及其相互作用的影响[J]. 生态学杂志, 2017, 36 (7): 2010-2018 [Wang YJ, Lu NN, Yang YJ, Ding TF, Zhao TF, Zhao ZG. Effects of climate warming on flowering plants, pollinators and their interactions [J]. Chin J Ecol, 2017, 36 (7): 2010-2018]
17 李笑媛, 陈润芍, 许安妮, 余路路, 王新厦, 曾建. 川芎对镉、铅及其复合处理的生理响应[J]. 应用与环境生物学报, 2019, 25 (2): 321-327 [Li XY, Chen RS, Xu AN, Yu LL, Wang XX, Zeng J. Physiological response to cadmium, lead, and their combination stress in Ligusticum chuanxiong Hort [J]. Chin J Appl Environ Biol, 2019, 25 (2): 321-327]
18 卢倩云, 曹宇棽, 陈友明, 晏琼. 镉胁迫下油菜毛状根的生理响应及铁钾含量[J]. 应用与环境生物学报, 2018, 24 (6): 1382-1389 [Lu QY, Cao YS, Chen YM, Yan Q. The physiological response and iron and potassium contents in the hairy roots of Brassica rape L. under cadmium stress [J]. Chin J Appl Environ Biol, 2018, 24 (6): 1382-1389]
19 简敏菲, 张乖乖, 史雅甜, 余厚平, 陈奕奇. 土壤镉、铅及其复合污染胁迫对丁香蓼(Ludwigia prostrata)生长和光合荧光特性的影响[J]. 应用与环境生物学报, 2017, 23 (5): 837-844 [Jian MF, Zhang GG, Shi YT, Yu HP, Chen YQ. Effects of single and combined pollution stress of cadmium and lead in soil on the growth and photosynthetic fluorescence characteristics of Ludwigia prostrata [J]. Chin J Appl Environ Biol, 2017, 23 (5): 837-844]
20 徐坤, 张晓琳, 胡晗, 李守望, 鲁成秀, 成杰民. 改性纳米碳黑修复镉污染土壤对蚯蚓的毒理效应[J]. 应用与环境生物学报, 2020, 26 (3): 543-550 [Xu K, Zhang XL, Hu H, Li SW, Lu CX, Cheng JM. Toxicological effects of modified nano-carbon black on earthworms in Cd-contaminated soil [J]. Chin J Appl Environ Biol, 2020, 26 (3): 543-550]
21 Moroń D, Grze? IM, Skorka P, Szentgy?rgyi H, Laskowski, R, Potts SG, Woyciechowski M. Abundance and diversity of wild bees along gradients of heavy metal pollution [J]. J Appl Ecol, 2012, 49 (1): 118-125
22 Ooik TV, Pausio S, Rantala MJ. Direct effects of heavy metal pollution on the immune function of a geometrid moth, Epirrita autumnata [J]. Chemosphere, 2008, 71 (10): 1840-1844
23 Polykretis P, Delfino G, Petrocelli I,Cervo R, Tanteri G, Montori G, Perito B, Branca JJV, Morucci G, Gulisano M. Evidence of immunocompetence reduction induced by cadmium exposure in honey bees (Apis mellifera) [J]. Environ Pollut, 2016, 218: 826-834
24 Meindl GA, Ashman TL. Nickel accumulation by Streptanthus polygaloides (Brassicaceae) reduces floral visitation rate [J]. J Chem Ecol, 2014, 40 (2): 128-135
25 Sivakoff FS, Gardiner MM. Soil lead contamination decreases bee visit duration at sunflowers [J]. Urban Ecosyst, 2017, 20 (6): 1221-1228
26 王怀玉, 李芹琼. 绵阳师院北校区园林植物调查与分析[J]. 绵阳师范学院学报, 2012, 31 (2): 99-105 [Wang HY, Li QQ. Investigation & analysis of landscape plants in north campus of Mianyang Normal University [J]. J Mianyang Teachers Coll, 2012, 31 (2): 99-105]
27 吴庆贵, 邹利娟, 吴福忠, 杨万勤, 张素兰. 涪江流域丘陵区不同植被类型水源涵养功能[J]. 水土保持学报, 2012, 26 (6): 254-258 [Wu QG, Zhou LJ, Wu FZ, Yang WQ, Zhang SL. Water conservation capacity of five main forest in the hilly area of Fujiang river basin [J]. J Soil Water Conserv, 2012, 26 (6): 254-258 ]
28 戴雄泽, 刘志敏. 初论我国辣椒产业的现状及发展趋势[J]. 辣椒杂志, 2005 (4): 1-6 [Dai XZ, Liu ZM. on current situation and its development trends of the pepper industry in China [J]. J Chin Capsicum, 2005 (4): 1-6]
29 张新. 平原区土壤重金属镉空间分布预测方法研究[D]. 成都: 四川农业大学, 2016 [Zhang X. Study on spatial distribution prediction method of heavy metal cadmium in plain area [D]. Chengdu: Sichuan Agricultural University, 2016]
30 袁一斌, 慕军鹏, 彭幼红, 孙书存. 多齿马先蒿与刺齿马先蒿花部形态、昆虫访花频率及种子产量比较研究[J]. 应用与环境生物学报, 2011, 17 (4): 467-472 [Yan YB, Mu JP, Peng YH, Sun SC. Comparative study on flower trait, pollinator visitation rate and seed production of two Pedicularis species [J]. Chin J Appl Environ Biol, 2011, 17 (4): 467-472]
31 Vesprini JL, Pacini E. Temperature-dependent floral longevity in two Hellebores species [J]. Plant Syst Evol, 2005, 252 (1-2): 63-70
32 Real LA, Rathcke BJ. Individual variation in nectar production and its effects on ?tness in Kalmia latifolia [J]. Ecology, 1991, 72: 149-155
33 Mu JP, Peng YH, Xi XQ, Wu XW, Griffin JN, Niklas KJ, Sun SC. Domesticated honeybees evolutionarily reduce ?ower nectar volume in a Tibetan lotus [J]. Ecology, 2014, 95 (11): 3161–3172
34 Cruden RW. Pollen grain size, stigma depth, and style length: the relationships revisited [J]. Plant Syst Evol, 2009, 278 (3-4): 223-238
35 Dafni A, Maues MM. A rapid and simple procedure to determine stigma receptivity [J]. Sex Plant Reprod, 1998, 11 (3): 177-180
36 Hansen J, M?ller IB. Percolation of starch and soluble carbohydrates from plant tissue for quantitative determination with anthrone [J]. Anal Biochem, 1975, 68: 87-94
37 Yoshida S, Forno D, Cock J, Gomez KA. Laboratory Manual for Physiological Studies of Rice [M]. Manila: International Rice Research Institute, 1976: 46-49
38 Vaudo AD, Patch HM, Mortensen DA, Grozinger CM, Tooker JF. Bumble bees exhibit daily behavioral patterns in pollen foraging [J]. Arthropod-Plant Inte, 2014, 8 (4): 273-283
39 Arroyo MTK, Armesto JJ, Primack RB. 1985. Community studies in pollination ecology in the high temperate Andes of central Chile. II. Effect of temperature on visitation rates and pollination possibilities [J]. Plant Syst Evol, 1985, 149 (3): 187-203
40 Sun SG, Armbruster WS, Huang SQ. Geographic consistency and variation in conflicting selectio generated by pollinators and seed predators [J]. Ann Bot-London, 2016, 118 (2): 227-237
41 周建华, 王永锐. 硅营养缓解水稻幼苗Cd、Cr毒害的生理研究[J]. 应用与环境生物学报, 1999 (1): 12-16 [Zhou JH, Wang YR. Physiological studies on poisoning effects of Cd and Cr on rice (Oryza sativa l.) seedlings through inhibition of Si nutrition [J]. Chin J Appl Environ Biol, 1999 (1): 12-16]
42 刘建福, 陈李林, 汤青林, 贺熙勇, 倪书邦, 曾明, 李道高. 不同土壤水分胁迫对澳洲坚果花期生长的影响[J]. 西南大学学报(自然科学版), 2004 (6): 735-739 [Liu FJ, Chen LL, Tang QL, He XY, NI SB, Zeng M, Li DG. Effect of soil water stress on the growth of Macadamia at the flowering stage [J]. J SW Univ (Nat Sci Ed), 2004 (6): 735-739]
43 周永斌, 吴栋栋, 于大炮, 隋琛莹. 长白山不同海拔岳桦非结构碳水化合物含量的变化[J]. 植物生态学报, 2009, 33 (1): 118-124 [Zhou YB, Wu DD, Yu DP. Variation of nonstructural carbohydrate content in Betula ermanii at different elevations of Changbai Mountain, China [J]. Chin J Plant Ecol, 2009, 33 (1): 118-124]
44 陈朝明, 龚慧群, 王凯荣. Cd对桑叶品质、生理生化特性的影响及其机理研究[J]. 应用生态学报, 1996, 7 (4): 417-423 [Chen CM, Gon HQ, Wang KR. Effect of on quality, physiological and biochemical characteristics of mulberry leaves and its mechanism [J]. Chin J Appl Ecol, 1996, 7 (4): 417-423]
45 荀二娜. 植物花部重金属积累对植物繁殖和蜂类传粉者的影响[D]. 长春: 东北师范大学, 2018 [Xun EN. Effects of floral heavy metal accumulation on plant reproduction and bee pollinators [D]. Changchun: Northeast Normal University, 2018]
46 Potts SG, Biesmeijer JC, Kremen C, Neumann P, Schweiger O, Kunin WE. Global pollinator declines: trends, impacts and drivers [J]. Trends Ecol Evol , 2010, 25 (6): 345


Last Update: 2021-10-25