|Table of Contents|

Ecologically toxic effect of biochar on earthworms under copper pollution(PDF)

Chinese Journal of Applied & Environmental Biology[ISSN:1006-687X/CN:51-1482/Q]

2021 05
Research Field:
Publishing date:


Ecologically toxic effect of biochar on earthworms under copper pollution
LI Ying1 2 LI Xiaoyan3 4 & ZHOU Chuifan3 4?
1 Institute?for?Agricultural?Standard?Testing?Technology,?Fujian?Academy?of?Agricultural?Sciences,?Fuzhou?350003,?China 2 Fujian?Key?Laboratory?of?Agro-products?Qualitiy?and?Safety,?Fuzhou?350003,?China 3 College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China 4 Key Laboratory of Soil and Water Conservation State Forestry and Grassland Administration, Southern Red Soil Region, Fuzhou 350002, China
copper pollution biochar artificial soil antioxidant enzyme dissolved organic carbon

To explore the effects and mechanisms of biochar on the growth of earthworms and Cu enrichment under Cu pollution, the earthworm species Eisenia fetida was exposed to artificial soil containing Cu solution under different pyrolysis temperatures (300 ℃ and 600 ℃) and application ratios (1% and 3%) of rice biochar. A 45-day subacute toxicity test of Cu and biochar on E. fetida was conducted. The results showed that the application of biochar inhibited the growth of E. fetida under Cu pollution. In addition, it significantly promoted Cu enrichment in E. fetida, exacerbated the oxidative stress of E. fetida, increased superoxide dismutase (SOD), catalase (CAT) activity, and malondialdehyde (MDA) content, and induced morphological damage in E. fetida. The Cu concentration in E. fetida under 300 ℃ biochar treatment at 1% and 3% application rates increased by 3.13% and 28.04%, respectively, in comparison with the 600 ℃ biochar treatment. Further, biochar application resulted in a rapid increase in water-soluble Cu content. Correlation analysis showed that the Cu concentration in E. fetida was significantly correlated with the soil water-soluble Cu content prior to earthworm culturing. The soil water-soluble Cu content was significantly correlated with soil dissolved organic carbon (DOC) content. The soil DOC content and water-soluble Cu content at 300 ℃ biochar treatments at 1% and 3% application rates were higher than the 600 ℃ biochar treatments before the culture of E. fetida. This may be an important reason for the higher Cu enrichment in E. fetida in the 300 ℃ biochar treatments. In addition, no significant correlations were observed between Cu concentration in E. fetida, water-soluble Cu content, and soil pH. The change in soil pH caused by biochar application was possibly not the decisive factor affecting the morphological change of Cu. The results indicated that the increase in soil DOC content caused by biochar application may increase the bioavailability of Cu under Cu pollution, which is not conducive to the growth of soil animals and has a negative impact on the soil ecosystem.


1 徐金玉, 王伟伟, 王惠, 张海燕. 铜污染土壤的生物修复研究进展[J]. 生物工程学报, 2020, 36 (3): 471-480 [Xu JY, Wang WW, Wang H, Zhang HY. Progress in bioremediation of copper-contaminated soils [J]. Chin J Biotechnol, 2020, 36 (3): 471-480]
2 袁金红, 李靖锐, 张海燕. 植物铜转运蛋白的结构和功能[J]. 植物学报, 2016, 51 (6): 849-858 [Yuan JH, Li JR, Zhang HY. Structure and function of copper transporters in plants [J]. Chin Bull Bot, 2016, 51 (6): 849-858]
3 李荭荭. 赵明柳, 董海霞, 唐守寅, 王果. 生物炭对铜污染土壤的修复及水稻Cu累积的影响[J]. 生态与农村环境学报, 2020, 36 (9): 1210-1217 [Li HH, Zhao ML, Dong HX, Tang SY, Wang G. Biochar reduced the soil Cu bioavailability and the accumulation of Cu in rice [J]. J Ecol Rural Environ, 2020, 36 (9): 1210-1217]
4 He L, Zhong H, Liu G, Dai Z, Brookes PC, Xu J. Remediation of heavy metal contaminated soils by biochar: mechanisms, potential risks and applications in China [J]. Environ Pollut, 2019, 252: 846-855
5 张艺腾, 范禹博, 徐笑天, 张秀芳, 李明堂. 鸡粪生物炭对土壤铜和锌形态及植物吸收的影响[J]. 农业环境科学学报, 2018, 37 (11): 2514-2521 [Zhang YT, Fan YB, Xu XT, Zhang XF, Li MT. Effects of chicken manure-derived biochar on Cu and Zn speciation in soil and uptake by plant [J]. J?Agro-Environ Sci, 2018, 37 (11): 2514-2521]
6 王风, 王梦露, 许堃, 董旭, 虞娜, 张玉龙, 党秀丽. 生物炭施用对棕壤重金属镉赋存形态及油菜吸收镉的影响[J]. 农业环境科学学报, 2017, 36 (5): 907-914 [Wang F, Wang ML, XU K, Dong X, Yu N, Zhang YL, Dang XL. Effects of biochar application on cadmium transformation in brown soil and uptake by baby bokchoi [J]. J?Agro-Environ Sci, 2017, 36 (5): 907-914]
7 Delannoy M, Yehya S, Techer D, Razafitianamaharavo A, Richard A, Caria G, Baroudi M, Montargès-Pelletier E, Rychen G, Feidt C. Amendment of soil by biochars and activated carbons to reduce chlordecone bioavailability in piglets [J]. Chemosphere, 2018, 210: 486-494
8 Ding J, Yin Y, Sun A, Lassen SB, Li G, Zhu D, Ke X. Effects of biochar amendments on antibiotic resistome of the soil and collembolan gut [J]. J Hazard Mater, 2019, 377: 186-194
9 Ren X, Zeng G, Tang L, Wang J, Wan J, Feng H, Song B, Huang C, Tang X. Effect of exogenous carbonaceous materials on the bioavailability of organic pollutants and their ecological risks [J]. Soil Biol Biochem, 2018, 116: 70-81
10 Panzarino O, Hyr?l P, Dobe? P, Vojtek L, Vernile P, Bari G, Terzano R, Spagnuolo M, de Lillo E. Rank-based biomarker index to assess cadmium ecotoxicity on the earthworm Eisenia andrei [J]. Chemosphere, 2016, 145: 480-486
11 Zhou C, Huang M, Yu J, Li Y, Liu A. The effect of low-molecular-weight organic acids on copper toxicity in E. fetida in an acute exposure system [J]. Environ Sci Pollut R, 2017, 24 (9): 8805-8813
12 Sanchez-Hernandez J C. Earthworm Biomarkers in Ecological Risk Assessment [M]//Ware GW, Whitacre DM, Albert LA. Reviews of environmental contamination and toxicology: continuation of residue reviews. New York: Springer New York, 2006: 85-126
13 Arnold RE, Hodson ME, Comber S. Does speciation impact on Cu uptake by, and toxicity to, the earthworm Eisenia fetida? [J]. Eur J Soil Biol, 2007, 43: S230-S232
14 Liu X, Zhang S, Wang J, Wang J, Shao Y, Zhu L. Biochemical responses and DNA damage in earthworms (Eisenia fetida) induced by ionic liquid [omim]PF6 [J]. Environ Sci Pollut R, 2016, 23 (7): 6836-6844
15 Zhang Q, Zhang G, Yin P, Lv Y, Yuan S, Chen J, Wei B, Wang C. Toxicological effects of soil contaminated with spirotetramat to the earthworm Eisenia fetida [J]. Chemosphere, 2015, 139: 138-145
16 Xu D, Li C, Wen Y, Liu, W. Antioxidant defense system responses and DNA damage of earthworms exposed to Perfluorooctane sulfonate (PFOS) [J]. Environ Pollut, 2013, 174: 121-127
17 Bradford M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principles of protein-dye binding [J]. Anal Biochem, 1976, 71 (s1-2): 248-254
18 吴波. 参环毛蚓对重金属镉离子的生理响应及其变化规律的研究[D]. 广州: 广州中医药大学, 2010 [Wu B. The study on physiology response and change regularity of heavy metal cadmium ion in Pheretima asperillum [D]. Guangzhou: Guangzhou University of Chinese Medicine, 2010]
19 王开峰, 彭娜, 何江, 吴礼滨, 林思武. 污泥生物炭中水溶性有机物的三维荧光光谱特征及其与铜的络合[J]. 环境科学与技术, 2017, 40 (10): 151-156 [Wang KF, Peng N, He J, Wu LB, Li SW, Characterization of sludge biochar -derived dissolved organic matter using three -dimension EEM fluorescence spectroscopies and its complexation by Cu [J]. Environ?Sci?Technol, 2017, 40 (10): 151-156]
20 唐行灿, 林亚楠, 陈金林, 张民. 生物炭对土壤固定铜及动植物行为的影响[J]. 广东农业科学, 2014, 41 (19): 47-51 [Tang XC, Lin YN, Chen JL, Zhang M. Effect of biochar application on immobilization of Cu by soil and behaviour of pakchoi and earthworm [J]. Guangdong?Agric?Sci, 2014, 41 (19): 47-51]
21 Li D, Hockaday WC, Masiello CA, Alvarez PJJ. Earthworm avoidance of biochar can be mitigated by wetting [J]. Soil Biol Biochem 2011, 43 (8): 1732-1737
22 Zhang Q, Saleem M, Wang C. Effects of biochar on the earthworm (Eisenia foetida) in soil contaminated with and/or without pesticide mesotrione [J]. Sci Total Environ, 2019, 671: 52-58
23 Liesch A, Weyers S, Gaskin J, Das K C. Impact of two different biochars on earthworm growth and survival [J]. Ann Environ Sci, 2010, 4: 1-9
24 Geracitano LA, Bocchetti R, Monserrat JM, Regoli F, Bianchini A. Oxidative stress responses in two populations of Laeonereis acuta (Polychaeta, Nereididae) after acute and chronic exposure to copper [J]. Mar Environ Res, 2004, 58 (1): 1-17
25 Sanchez-Hernandez J C, Ríos J M, Attademo A M, Malcevschi A, Andrade Cares X. Assessing biochar impact on earthworms: Implications for soil quality promotion [J]. J Hazard Mater, 2019, 366: 582-591
26 黄先飞,秦樊鑫,胡继伟. 重金属污染与化学形态研究进展[J]. 微量元素与健康研究, 2008 (1): 48-51 [Huang XF, Qin FX, Hu JW. Review on studies of heavy metal pollution and chemical speciation [J]. Studies Trace Elements Health, 2008 (1): 48-51]
27 周波, 唐晶磊, 代金君, 许欢, 杨小雪, 陈旭飞, 张池, 戴军. 蚯蚓作用下污泥重金属形态变化及其与化学生物学性质变化的关系[J]. 生态学报, 2015, 35 (19): 6269-6279 [Zhou B, Tang JL, Dai JJ, Xu H, Yang XX, Cheng XF, Zhang C, Dai J. Remediating effluent sludge with earthworms: changes in heavy metal speciation and associated chemical and biological properties [J]. Acta?Ecol?Sin, 2015, 35 (19): 6269-6279]
28 Peijnenburg W, Zablotskaja M, Vijver M. Monitoring metals in terrestrial environments within a bioavailability framework and a focus on soil extraction [J]. Ecotox Environ Safe, 2007, 67: 163-179
29 侯艳伟,曾月芬,安增莉. 生物炭施用对污染红壤中重金属化学形态的影响[J]. 内蒙古大学学报(自然科学版), 2011, 42 (4): 460-466 [Hou YW, Zeng YF, An ZL. Effects of the application of biochar on the chemical fraction of heavy metals in polluted red soil [J]. J?Inner?Mongolia?Agric Univ (Nat Sci?Ed) , 2011, 42 (4): 460-466]
30 Uchimiya M, Lima I M, Klasson K T, Wartelle L H. Contaminant immobilization and nutrient release by biochar soil amendment: Roles of natural organic matter [J]. Chemosphere. 2010, 80 (8): 935-940
31 张彦. 太湖溶解性有机质对Cu的形态及生物有效性的影响[D]. 徐州: 中国矿业大学, 2013 [Zhang Y. Influence of DOM in Taihu lake on Cu species and bioavailability [D]. Xuzhou: China University of Mining Technology, 2013]
32 Lehmann J, Rillig MC, Thies J, Masiello CA. Hockaday WC, Crowley D. Biochar effects on soil biota-A review [J]. Soil Biol Biochem, 2011, 43 (9): 1812-1836
33 Fu H, Liu H, Mao J, Chu W, Li Q, Alvarez P, Qu X. Photochemistry of dissolved black carbon released from biochar: reactive oxygen species generation and phototransformation [J]. Environ Sci Technol, 2015, 50 (3):1218-1226.
34 Wu H, Dong X, Liu H. Evaluating fluorescent dissolved organic matter released from wetland-plant derived biochar: effects of extracting solutions [J]. Chemosphere, 2018, 212. 10.1016/j.chemosphere.2018.08.110
35 袁冬海, 崔骏, 洪志强, 闻丽, 王京刚, 马文林, 李俊奇. 白洋淀沉水植物腐解溶解性有机物与重金属的相互作用[J]. 环境工程学报, 2016, 10 (5): 2184-2192 [Yuan DH, Cui J, Hong ZQ, Wen L, Wang JG, Ma WL, Li JQ. Interaction between dissolved organic matter released by macrophyte decomposition and heavy metal in Lake Baiyangdian [J]. Chin J Environ Eng, 2016, 10 (5): 2184-2192]
36 Wei J, Tu C, Yuan G, Bi D, Wang H, Zhang L. Pyrolysis temperature-dependent changes in the characteristics of biochar-borne dissolved organic matter and its copper binding properties [J]. B Environ Contam Tox, 2018, 103: 1-6
37 Wang J, Shi L, Zhang X, Zhao X, Zhong K, Wang S, Zou J, Shen Z, Chen Y. Earthworm activities weaken the immobilizing effect of biochar as amendment for metal polluted soils [J]. Sci Total Environ, 2019, 696: 133729
38 Tammeorg P, Parviainen T, Nuutinen V, Simojoki A, Vaara E, Helenius J. Effects of biochar on earthworms in arable soil: avoidance test and field trial in boreal loamy sand [J]. Agric Ecosyst Environ, 2014, 191: 150-157


Last Update: 2021-10-25