|Table of Contents|

Latitudinal pattern of carbon, nitrogen, and phosphorus contents and their ecological stoichiometry in Eucalyptus plantations in Guangxi, China(PDF)

Chinese Journal of Applied & Environmental Biology[ISSN:1006-687X/CN:51-1482/Q]

Issue:
2021 05
Page:
1194-1202
Research Field:
Articles
Publishing date:

Info

Title:
Latitudinal pattern of carbon, nitrogen, and phosphorus contents and their ecological stoichiometry in Eucalyptus plantations in Guangxi, China
Author(s):
PENG Xingbing1 2 3 HU Gang1 2 HU Cong1 2 LU Shaonuan1 2 3 HUANG Kuaikuai1 2 3 PANG Qingling1 2 3 & ZHANG Zhonghua1 2?
1 Key Laboratory of Beibu Gulf Environment Change and Resources Utilization of Ministry of Education, Nanning Normal University, Nanning 530001, China 2 Collaborative Innovation Center of the Ecological Environment and Integration Development in the Xijiang River Basin, Nanning Normal University, Nanning 530001, China 3 School of Geography and Planning, Nanning Normal University, Nanning 530001, China
Keywords:
latitudinal pattern Eucalyptus plantation soil nutrient ecological stoichiometry
CLC:
-
PACS:
DOI:
10.19675/j.cnki.1006-687x.2020.05051
DocumentCode:

Abstract:
The ecological stoichiometric ratios of carbon (C), nitrogen (N), and phosphorus (P) are important features of ecosystem processes and functions, and their research is currently one of the research hotspots in ecology. In this study, 24 permanent plots were established in Eucalyptus plantations in Guilin (24°15′-26°23′ N), Nanning (22°12′-23°32′N), and Beihai (20°26′-21°55′N), and the latitudinal change patterns of C, N, and P contents and their stoichiometry characteristics of Eucalyptus leaf, forest floor leaf litter, and soil were analyzed. The results showed that: (1) The order of average content of C and N in the three regions was leaf > leaf litter > soil, and the order of average P content was leaf > soil > leaf litter. The average P content of leaf litter showed a significant increase with latitude (P<0.05), while the soil and leaf nutrient content and latitude were not significant. (2) The order of C:N, C:P, and N:P ratios in the three regions was litter > leaf > soil. Leaf C:P and N:P ratios, and soil C:N, C:P, and N:P ratios decreased significantly with increasing latitude (P < 0.05). (3) There was a significant positive correlation between leaf and soil C content (P < 0.05), but there was no significant correlation between leaf N and P content and soil N and P content, which indicated that soil N and P had little effect on leaf N and P content. The C:P ratio of leaf litter was significantly positively correlated with the soil C:P ratio (P < 0.05), indicating that there was a certain relationship between leaf litter and soil C and P content. This study revealed the ecological stoichiometric characteristics of C, N, and P among leaf, leaf litter, and soil in Eucalyptus plantations in Guangxi and their trends with latitude. The results of this study indicate that the decomposition of C, N, and P in such plantations was mainly limited by P, and that P might be a limiting factor for the growth of Eucalyptus in the Beihai region. The results of this study can provide a scientific basis for the management of Eucalyptus plantations.

References

1 Elser JJ, Dobberfuhl DR, Mackay NA, Schampel JH. Organism size, life history, and N:P stoichiometry [J]. Bioscience, 1996, 46 (9):674-684
2 Sterner RW, Elser JJ. Ecological Stoichiometry: The Biology of Elements from Molecules to the Biosphere [M]. Princeton: Princeton University Press, 2002
3 Elser JJ, Acharya K, Kyle M, CotnerJ, Makino W, Markow T, Watts T, Hobbie S, Fagan W, Schade J, Hood J, Sterner RW. Growth rate-stoichiometry couplings in diverse biota [J]. Ecol Lett, 2003, 6 (10): 936-943
4 Tessier JT, Raynal DJ. Use of nitrogen to phosphorus ratios in plant tissue as an indicator of nutrient limitation and nitrogen saturation [J]. J Appl Ecol, 2003, 40 (3): 523-534
5 Koerselman W, Meuleman AFM. The vegetation N:P ratio: a new tool to detect the nature of nutrient limitation [J]. J Appl Ecol, 1996, 33 (6): 1441-1450
6 Reich PB, Oleksyn J. Global patterns of plant leaf N and P in relation to temperature and latitude[J]. PNAS, 2004, 101 (30): 11001-11006
7 Mcgroddy ME, Daufresne T, Hedin LO. Scaling of C:N:P stoichiometry in forests worldwide: implications of terrestrial redfield-type ratios [J]. Ecology, 2004, 85 (9): 2390-2401
8 欧延升, 汪霞, 李佳, 贾海霞, 赵云飞, 黄政, 洪苗苗. 不同恢复年限人工草地土壤碳氮磷含量及其生态化学计量特征[J]. 应用与环境生物学报, 2019, 25 (1): 38-45 [Ou YS, Wang X, Li J, Jia HX, Zhao YF, Huang Z, Hong MM. Content and ecological stoichiometry characteristics of soil carbon, nitrogen, and phosphorus in artificial grassland under different restoration years [J]. Chin J Appl Environ Biol, 2019, 25 (1): 38-45]
9 屈凡柱, 孟灵, 付战勇, 孙景宽, 刘京涛, 宋爱云. 不同生境条件下滨海芦苇湿地C、N、P化学计量特征[J]. 生态学报, 2018, 38 (5): 1731-1738 [Qu FZ, Meng L, Fu ZY, Sun JK, Liu JT, Song AY. The stoichiometry characterization of carbon, nitrogen and phosphorus in different reed-dominated coastal wetland habitats [J]. Acta Ecol Sin, 2018, 38 (5): 1731-1738]
10 赵耀, 王百田, 李萌, 王旭虎, 董秀群. 晋西吕梁山区3种森林碳氮磷生态化学计量特征[J]. 应用与环境生物学报, 2018, 24 (3): 518-524 [Zhao Y, Wang BT, Li M, Wang XH, Dong XQ. Ecological stoichiometric characteristics of carbon, nitrogen, and phosphorus in three forests in the Lüliang Mountainous Area of Shanxi Province [J]. Chin J Appl Environ Biol, 2018, 24 (3): 518-524]
11 Zhang K, Zheng H, Chen FL, Ouyang ZY, Wang Y, Wu YF, Lan J, Fu M, Xia XW. Changes in soil quality after converting Pinus to Eucalyptus plantations in southern China [J]. Solid Earth. 2015, 6 (1): 115-123
12 Cook RL, Binkley D, Stape JL. Eucalyptus plantation effects on soil carbon after 20 years and three rotations in Brazil [J]. For Ecol Manag. 2016, 359 (1): 92-98
13 谢耀坚. 真实的桉树[M]. 北京: 中国林业出版社, 2015 [Xie YJ. Ture Eucalyptus [M]. Beijing: China Forestry Publishing House, 2015]
14 Williams RA. Mitigating biodiversity concerns in Eucalyptus plantations located in South China [J]. J Biosci Med, 2015, 3 (6): 1-8
15 黄国勤, 赵国其. 广西桉树种植的历史、现状、生态问题及应对策略[J]. 生态学报, 2014, 34 (18): 5142-5152 [Huang GQ, Zhao GQ. The history, status quo, ecological problems and countermeasures of Eucalyptus plantations in Guangxi [J]. Acta Ecol Sin, 2014, 34 (18): 5142-5152]
16 Alem S, Pavlis J, Urban J, Kucera J. Pure and mixed plantations of Eucalyptus camaldulensis and Cupressus lusitanica: their growth interactions and effect on diversity and density of undergrowth woody plants in relation to light [J]. Open J For, 2015, 5 (4): 375-386
17 汪珍川, 杜虎, 宋同清, 彭晚霞, 曾馥平, 曾昭霞, 张浩. 广西主要树种(组)异速生长模型及森林生物量特征[J]. 生态学报, 2015, 35 (13): 4462-4472 [Wang ZC, Du H, Song TQ, Peng WX, Zeng FP, Zeng ZX, Zhang H. Allometric models of major tree species and forest biomass in Guangxi [J]. Acta Ecol Sin, 2015, 35 (13): 4462-4472]
18 Pima NE, Chamshama SAO, Iddi S, Magllzu J. Growth performance of Eucalypt clones in Tanzania [J]. Env Ecol Res, 2016, 4 (3): 146-154
19 段春燕, 何成新, 徐广平, 黄玉清, 罗亚进, 滕秋梅, 张德楠, 周龙武. 桂北不同林龄桉树人工林土壤养分及生物学特性[J]. 热带作物学报, 2019, 40 (6): 1213-1222 [Duan CY, He CX, Xu GP, Huang YQ, Luo YJ, Teng QM, Zhang DN, Zhou LW. Soil nutrients and biological characteristics in Eucalyptus plantations of different planting ages at north Guangxi [J]. Chin J Trop Crops, 2019, 40 (6): 1213-1222]
20 Kerr TF, Ruwanza S. Does Eucalyptus grandis, invasion and removal affect soils and vegetation in the eastern Cape Province, South Africa [J]. Austral Ecol, 2016, 41: 328-338
21 朱育锋, 吴玲, 彭晚霞, 杜虎, 刘永贤, 兰秀, 宋敏. 广西不同林龄桉树人工林叶-凋落物-土壤C、N、P生态化学计量特征[J]. 中南林业科技大学学报, 2019, 39 (6): 92-98, 106 [Zhu YF, Wu L, Peng WX, Du H, Liu YX, Lan x, Song M. Ecological stoichiometric characteristics of C, N, and P of leaves, litter and soil in Eucalyptus plantations at different stand ages in Guangxi [J]. J Cent South Univ For Technol, 2019, 39 (6): 92-98, 106]
22 许宇星, 王志超, 竹万宽, 杜阿朋. 不同品种桉树林生活叶-凋落物-土壤碳氮磷化学计量特征[J]. 西北农林科技大学学报(自然科学版), 2018, 46 (6): 94-110 [Xu YX, Wang ZC, Zhu WK, Du AP. Stoichiometric characteristics of C, N and P in leaf-litter-soil of different Eucalyptus varieties [J]. J NW A&F Univ (Nat Sci Ed), 2018, 46 (6): 94-110]
23 Pang DB, Wang GZ, Li GJ, Sun YL, Liu YG, Zhou JX. Ecological stoichiometric characteristics of two typical plantations in the karst ecosystem of southwestern China [J]. Forests, 2018, 9 (56): 1-14
24 胡宝清. 广西地理[M]. 北京: 北京师范大学出版社, 2011 [Hu BQ. Geography of Guangxi [M]. Beijing: Beijing Normal University Press, 2011]
25 Zheng SX, Shangguan ZP. Spatial patterns of leaf nutrient traits of the plants in the Loess Plateau of China [J]. Trees, 2007, 191: 279-293
26 姜沛沛. 陕西省森林生态系统乔灌草叶片与凋落物 C、N、P 化学计量特征[D]. 杨凌: 西北农林科技大学, 2016 [Jiang PP. C, N, P stoichiometry of tree, shrub herb leaves and litter in forest ecosystem of Shaanxi Province [D]. Yangling: Northwest A&F University, 2016]
27 Elser JJ, Fagan WF, Denno RF, Dobberfuhl DR, Folarin A, Huberty A, Interlandi S, Kilham SS, McCauley E, Schulz KL, Siemann EH, Sterner RW. Nutritional constraints in terrestrial and freshwater food webs [J]. Nature, 2000, 408: 578-580
28 Elser JJ, Bracken ME, Cleland EE, Gruner DS, Harpole WS, Hillebrand H, Ngai JT, Seabloom EW, Shurin JB, Smith JE. Global analysis of nitrogen and phosphorus limitation of primary producers in fresh water, marine and terrestrial ecosystems [J]. Ecol Lett, 2007, 10 (12): 1135-1142
29 Han WX, Fang JY, Guo DL, Zhang Y. Leaf nitrogen and phosphorus stoichiometry across 753 terrestrial plant species in China [J]. New Phytol, 2005, 168 (2): 377-385
30 Yan ZB, Li P, Chen YH, Han WX & Fang JY. Nutrient allocation strategies of woody plants: an approach from the scaling of nitrogen and phosphorus between twig stems and leaves [J]. Sci Rep-UK, 2016, 6 (1): 20099
31 李明雨, 黄文广, 杨君珑, 李小伟. 宁夏草原植物叶片氮磷化学计量特征及其驱动因素[J]. 草业学报, 2019, 28 (2): 23-32 [Zhao J, Huang WG, Yang JL, Li XW. Factors influencing leaf nitrogen and phosphorus stoichiometry in plant species of Ningxia grasslands [J]. Acta Prat Sin, 2019, 28 (2): 23-32]
32 Assaeed AM, McGowan M, Hebblethwaite PD, Brereton JC. Effect of soil compaction on growth, yield and light interception of selected crops [J]. Ann Appl Biol, 1990, 117:653-666
33 Berg B. Litter decomposition and organic matter turnover in northern forest soils [J]. For Ecol Manag, 2000, 133 (1-3): 13-22
34 赵晶, 闫文德, 郑威, 李忠文. 樟树人工林凋落物养分含量及归还量对氮沉降的响应[J]. 生态学报, 2016, 36 (2): 350-359 [Zhao J, Yan WD, Zheng W, Li ZW. Nutrient contents and fluxes in the litterfall from Cinnamomum camphora plantation in response to simulated nitrogen deposition [J]. Acta Ecol Sin, 2016, 36 (2): 350-359]
35 姜沛沛, 曹扬, 陈云明. 陕西省森林群落乔灌草叶片和凋落物 C、 N、 P 生态化学计量特征[J]. 应用生态学报, 2016, 27 (2) : 365-372 [Jiang PP, Cao Y, Chen YM. C, N, P stoichiometric characteristics of tree, shrub, herb leaves and litter in forest community of Shaanxi Province, China [J]. Chin J Appl Ecol, 2016, 27 (2): 365-372]
36 Yuan ZY, Chen HYH. Global trends in schemed-leaf nitrogen and phosphorus [J]. Glob Ecol Biogeogr, 2009, 18 (5): 532-542
37 王晶苑, 王绍强, 李纫兰, 闫俊华, 沙丽清, 韩士杰. 中国四种森林类型主要优势植物的C: N: P化学计量学特征[J]. 植物生态学报, 2011, 35 (06): 587-595 [Wang JY, Wang SQ, Li RL, Yan JH, Sha LQ, Han SJ. C: N: P stoichiometric characteristics of four forest types’ dominant tree species in China [J]. Chin J Plant Ecol, 2011, 35 (06): 587-595]
38 Yan T, Lü XT, Zhu JJ, Yang K, Yu LZ, Gao T. Changes in nitrogen and phosphorus cycling suggest a transition to phosphorus limitation with the stand development of larch plantations [J]. Plant Soil, 2018, 422: 385-396
39 Zhang H, Wang J, Wang J, Guo Z, Wang GG, Zeng D, Wu T. Tree stoichiometry and nutrient resorption along a chronosequence of Metasequoia glyptostroboides forests in coastal China [J]. For Ecol Manag, 2018, 430: 445-450
40 曾德慧, 陈广生. 生态化学计量学: 复杂生命系统奥秘的探索[J]. 植物生态学报, 2005, 29 (6): 1007-1019 [Zeng DH, Chen GS. Ecological stoichiometry: a science to explore the complexity of living systems [J]. Chin J Plant Ecol, 2005, 29 (6): 1007-1019
41 李喜霞, 杜天雨, 魏亚伟, 周永斌. 阔叶红松林生态化学计量学特征及其对纬度梯度的响应[J]. 生态学报, 2018, 38 (11): 3952-3960 [Li XX, Du TY, Wei YW, Zhou YB. Characteristics of ecological stoichiometry in broad-leaved and Korean pine mixed forest and its response to latitude gradient in Northeast China [J]. Acta Ecol Sin, 2018, 38 (11): 3952-3960]
42 曾全超, 李鑫, 董扬红, 李娅芸, 程曼, 安韶山. 陕北黄土高原土壤性质及其生态化学计量的纬度变化特征[J]. 自然资源学报, 2015, 30 (5): 870-879 [Zeng QC, Li X, Dong YH, Li YY, Chen M, An SS. Ecological stoichiometry characteristics and physical-chemical properties of soils at different latitudes on the Loess Plateau [J]. J Nat Resour, 2015, 30 (5): 870-879]
43 冯德枫, 包维楷. 土壤碳氮磷化学计量比时空格局及影响因素研究进展[J]. 应用与环境生物学报, 2017, 23 (2): 400-408 [Feng DF, Bao WK. Review of the temporal and spatial patterns of soil C: N: P stoichiometry and its driving factors [J]. Chin J Appl Environ Biol, 2017, 23 (2): 400-408]
44 Tian HQ, Chen GS, Zhang C, Melillo JM, Hall CAS. Pattern and variation of C: N: P ratios in China’s soils: a synthesis of observational data [J]. Biogeochemistry, 2010, 98 (1-3): 139-151
45 全国土壤普查办公室. 中国土壤[M]. 北京: 中国农业出版社, 1998 [The national Soil Survey Office. Soil of China [M]. Beijing: China Agriculture Press, 1998]
46 Yang D, Mao H, Jin G. Divergent responses of Foliar N: P stoichiometry during different seasons to nitrogen deposition in an old-growth temperate forest, Northeast China [J]. Forests, 2019, 10 (3): 257-273
47 Vitousek PM. Nutrient cycling and nutrient use efficiency [J]. Am Nat, 1982, 119 (4): 553-572
48 Aerts R. Nutrient resorption from senescing leaves of perennials: are there general patterns [J]. J Ecol, 1996, 84 (4): 597-608
49 Zhang W, Zhao J, Pan FJ, Li DJ, Chen HS, Wang KL. Changes in nitrogen and phosphorus limitation during secondary succession in a karst region in southwest China [J]. Plant Soil, 2015, 391: 77-91
50 Gusewell S. N:P ratios in terrestrial plants: variation and functional significance [J]. New Phytol, 2004, 164 (2): 243-266
51 Valladares F, Martinez-Ferri E, Balaguer L, Perez-Corona E, Manrique E. Low leaf-level response to light and nutrients in Mediterranean evergreen oaks: a conservative resource-use strategy [J]. New Phytol, 2000, 148 (1): 79-91
52 唐仕姗, 杨万勤, 殷睿, 熊莉, 王海鹏, 王滨, 张艳, 彭艳君, 陈青松, 徐振锋. 中国森林生态系统凋落叶分解速率的分布特征及其控制因子[J]. 植物生态学报, 2014, 38 (6): 529-539 [Tang SS, Yang WQ, Yin R, Xiong L, Wang HP, Wang B, Zhang Y, Peng YJ, Chen QS, Xu ZF. Spatial characteristics in decomposition rate of foliar litter and controlling factors in Chinese forest ecosystems [J]. Chin J Plant Ecol, 2014, 38 (6): 529-539]
53 陈亚梅, 和润莲, 邓长春, 刘洋, 杨万勤, 张健. 川西高山林线交错带凋落物纤维素分解酶活性研究[J]. 植物生态学报, 2014, 38 (4): 334-342 [Chen YM, He RL, Deng CC, Liu Y, Yang WQ, Zhang J. Litter cellulolytic enzyme activities in alpine timberline ecotone of western Sichuan [J]. Chin J Plant Ecol, 2014, 38 (4): 334-342]
54 Liu D, Keiblinger KM, Leitner S, Mentler A, Boltenstern SZ. Is there a convergence of deciduous leaf litter stoichiometry, biochemistry and microbial population during decay [J]. Geoderma, 2016, 272: 93-100
55 潘复静, 张伟, 王克林, 何寻阳, 梁士楚, 韦国富. 典型喀斯特峰丛洼地植被群落凋落物 C:N:P 生态化学计量特征[J]. 生态学报, 2011, 31 (2): 335-343 [Pan FJ, Zhang W, Wang KL, He XY, Liang SC, Wei GF. Litter C:N:P ecological stoichiometry character of plant communities in typical Karst Peak-Cluster Depression [J]. Acta Ecol Sin, 2011, 31 (2): 335-343]
56 Cao Y, Chen Y. Coupling of plant and soil C: N: P stoichiometry in black locust (Robinia pseudoacacia) plantations on the Loess Plateau, China [J]. Trees 2017, 31: 1559-1570
57 Batjes NH. Total carbon and nitrogen in the soils of the world [J]. Eur J Soil Sci, 2014, 65 (1): 10-21
58 王绍强, 于贵瑞. 生态系统碳氮磷元素的生态化学计量学特征[J]. 生态学报, 2008, 28 (8): 3937-3947 [Wang SQ, Yu GR. Ecological stoichiometry characteristics of ecosystem carbon, nitrogen and phosphorus elements [J]. Acta Ecol Sin, 2008, 28 (8): 3937-3947]
59 Zhao FZ, Kang D, Han XH, Yang GH, Feng YZ, Ren GX. Soil stoichiometry and carbon storage in long-term afforestation soil affected by understory vegetation diversity [J]. Ecol Eng, 2015, 74 (74): 415-422
60 李从娟, 徐新文, 孙永强, 邱永志, 李生宇, 高培, 钟显彬, 闫健, 王桂芬. 不同生境下三种荒漠植物叶片及土壤C、N、P的化学计量特征[J]. 干旱区地理, 2014, 37 (5): 996-1004 [Li CJ, Xu XW, Sun YQ, Qiu YZ, Li SY, Gao P, Zhong XB, Yan J, Wang GF. Stoichiometric characteristics of C, N, P for three desert plants leaf and soil at different habitats [J]. Arid Land Geogr, 2014, 37 (5): 996-1004]

Memo

Memo:
-
Last Update: 2021-10-25