|Table of Contents|

Carbon, nitrogen, and phosphorus stoichiometric characteristics of ground cover and soil in a forest-shrub ecotone in the eastern Tibetan Plateau(PDF)

Chinese Journal of Applied & Environmental Biology[ISSN:1006-687X/CN:51-1482/Q]

2021 05
Research Field:
Publishing date:


Carbon, nitrogen, and phosphorus stoichiometric characteristics of ground cover and soil in a forest-shrub ecotone in the eastern Tibetan Plateau
LIU Mei1 & MA Zhiliang2?
1 Sichuan Province Key Laboratory of Ecological Security and Protection, Mianyang Normal University, Mianyang 621000, China 2 College of Life Science, China West Normal University, Nanchong 637009, China
litter moss soil vegetation type ecological stoichiometry characteristic Qinghai-Tibet Plateau

This study was undertaken to understand the effects of alpine shrubland expansion on the carbon (C), nitrogen (N), and phosphorus (P) stoichiometric characteristics of ground cover and soils on the eastern Qinghai-Tibet Plateau. The ground cover (i.e., litter and moss) and soils from different layers (0-10 cm, 10-20 cm, and 20-30 cm) were collected from three vegetation types of a typical alpine forest-shrub ecotone in the source area of the Minjiang River. The vegetation types were dominated by Picea likiangensis (coniferous forest), Picea likiangensis-Salix oritrepha (forest-shrub), and Sibiraea angustata (shrub). We analyzed the total C, total N, total P, and C/N, C/P, and N/P ratios of litter, moss, and soils, as well as their relationships. The results showed that the total C content and C/P ratio of litter in the coniferous forest and the shrubland were significantly higher (P < 0.05) than those in the forest-shrub. The total C, total P, and N/P and C/N ratios of litter in coniferous forest and forest-shrub were significantly higher (P < 0.05) than those in shrubland. The total C content, and C/N and C/P ratios of moss in coniferous forest were significantly higher (P < 0.05) than those in forest-shrub, while the total N, total P, and N/P ratio of moss in coniferous forest were significantly lower (P < 0.05) than those in forest-shrub. The total C, total N, and total P contents of 0-30 cm soils in forest-shrub were significantly higher (P < 0.05) than those in coniferous forest and shrubland. Moreover, the C/N, N/P, and C/P ratios varied with soil layer and vegetation type, and there were no consistent patterns of the ratios in soils. Furthermore, the Pearson correlation analysis indicated that the total C content of litter and moss in the forest-shrub ecotone were significantly (P < 0.05) and negatively correlated with total C, total N, and total P contents in the 0-30 cm soils. The total N content of litter and moss was significantly (P < 0.05) and positively correlated with total C contents in the 0-30 cm soils. The total P content of litter and moss was significantly (P < 0.05) and positively correlated with total C, total N, and total P contents in the 0-30 cm soils. The C/N and C/P ratios of litter and moss were both significantly (P < 0.05) and negatively correlated with total C and total P contents of 0-30 cm soils, while N/P ratio was significantly (P < 0.05) and positively correlated with C/N and C/P ratios, and significantly (P < 0.05) and negatively correlated with N/P ratio of 0-30 cm soils. These results imply that the expansion of alpine scrubland could accelerate the sequestration of C, N, and P in ground cover and soil, and further affect the ecological processes of C, N, and P returning and cycling on the forest floor of the eastern Qinghai-Tibet Plateau.


1 Klinerová T, Dostál P. Nutrient‐demanding species face less negative competition and plant-soil feedback effects in a nutrient‐rich environment [J]. New Phytol, 2020, 225 (3): 1343-1354
2 Du EZ, Terrer C, Pellegrini AFA, Ahlstr?m A, van Lissa CJ, Zhao X, Xia N, Wu XH, Jackson RB. Global patterns of terrestrial nitrogen and phosphorus limitation [J]. Nature Geosci, 2020, 13: 221-226
3 Chomel M, Guittonny-Larchevêque, M, Fernandez C, Gallet C, DesRochers A, Paré D, Jachson BJ, Baldy V. Plant secondary metabolites: a key driver of litter decomposition and soil nutrient cycling [J]. J Ecol, 2016, 104: 1527-1541
4 Sayer EJ, Rodtassanna C, Sheldrake M, Bréchet LM, Achford OS, Lopez-Sangil L, Kerdraon-Byrne D, Castro B, Turner BL, Wright SJ, Tanner EVJ. Revisiting nutrient cycling by litterfall-Insights from 15 years of litter manipulation in old-growth lowland tropical forest [J]. Adv Ecol Res, 2020, 62: 173-223
5 Zheng Z, Lu J, Su Y, Yang Q, Lin Y, Liu Y, Yang J, Huang H, Wang X. Differential effects of N and P additions on foliar stoichiometry between species and community levels in a subtropical forest in eastern China [J]. Ecol Indic, 2020, 117: 106537
6 Zeng QC, Li X, Dong YH, An SS, Darboux F. Soil and plant components ecological stoichiometry in four steppe communities in the Loess Plateau of China [J]. Catena, 2016, 147: 481-488
7 Wang Y, Ren Z, Ma P, Wang Z, Niu D, Fu H, Elser JJ. Effects of grassland degradation on ecological stoichiometry of soil ecosystems on the Qinghai-Tibet Plateau [J]. Sci Total Environ, 2020, 722: 137910
8 Zhang ZS, Song XL, Lu XG, Xue ZS. Ecological stoichiometry of carbon, nitrogen, and phosphorus in estuarine wetland soils: influences of vegetation coverage, plant communities, geomorphology, and seawalls [J]. J Soil Sediment, 2013, 13: 1043-1051
9 Butler OM, Elser JJ, Lewis T, Maunsell SC, Rachti MR, Chen C. The multi-element stoichiometry of wet eucalypt forest is transformed by recent, frequent fire [J]. Plant Soil, 2020, 447: 447-461
10 Dong C, Wang W, Liu H, Xu X, Zeng H. Temperate grassland shifted from nitrogen to phosphorus limitation induced by degradation and nitrogen deposition: Evidence from soil extracellular enzyme stoichiometry [J]. Ecol Indic, 2019, 101: 453-464
11 王宝荣, 曾全超, 安韶山, 张海鑫, 白雪娟. 黄土高原子午岭林区两种天然次生林植物叶片-凋落叶-土壤生态化学计量特征[J]. 生态学报, 2017, 37 (16): 5461-5473 [Wang BR, Zeng QC, An SS, Zhang HX, Bai XJ. C:N:P stoichiometry characteristics of plants-litter-soils in two kind types of natural secondary forest on the Ziwuling region of the Loess Plateau [J]. Acta Ecol Sin, 2017, 37 (16): 5461-5473]
12 张萍, 章广琦, 赵一娉, 彭守璋, 陈云明, 曹扬. 黄土丘陵区不同森林类型叶片-凋落物-土壤生态化学计量特征[J]. 生态学报, 2018, 38 (14): 5087-5098 [Zhang P, Zhang GQ, Zhao YP, Peng SZ, Chen YM, Cao Y. Ecological stoichiometry characteristics of leaf-litter-soil interactions in different forest types in the Loess hilly-gully region of China [J]. Acta Ecol Sin, 2018, 38 (14): 5087-5098]
13 任悦, 高光磊, 丁国栋, 张英, 郭米山, 曹红雨, 苏敏. 沙地樟子松人工林叶片-枯落物-土壤碳氮磷化学计量特征[J]. 应用生态学报, 2019, 30 (3): 743-750 [Ren Y, Gao GL, Ding GD, Zhang Y, Guo MS, Cao HY, Su M. Stoichiometric characteristics of nitrogen and phosphorus in leaf-litter-soil system of Pinus sylvestris var. mongolica plantations [J]. Chin J Appl Ecol, 2019, 30 (3): 743-750]
14 贺合亮, 阳小成, 王东, 孙誉育, 尹春英, 李婷, 黎云祥, 周国英, 张林, 刘庆. 青藏高原东部窄叶鲜卑花灌丛土壤C、N、P生态化学计量学特征[J]. 应用与环境生物学报, 2015, 21 (6): 1128-1135 [He H L, Yang X C, Wang D, Sun YY, Yin CY, Li T, Li YX, Zhou GY, Zhang L, Liu Q. Ecological stoichiometric characteristics of soil carbon, nitrogen and phosphorus of Sibiraea angustata shrub in eastern Qinghai-Tibetan Plateau [J]. Chin J Appl Environ Biol, 2015, 21 (6): 1128-1135]
15 贺合亮, 阳小成, 李丹丹, 尹春英, 黎云祥, 周国英, 张林, 刘庆. 青藏高原东部窄叶鲜卑花碳、氮、磷化学计量特征[J]. 植物生态学报, 2017, 41 (1): 126-135 [He H L, Yang X C, Li D D, Yin CY, Li YX, Zhou GY, Zhang L, Liu Q. Stoichiometric characteristics of carbon, nitrogen and phosphorus of Sibiraea angustata shrub on the eastern Qinghai-Xizang Plateau [J]. Chin J Plant Ecol, 2017, 41 (1): 126-135]
16 张贺全. 岷江源区植物群落物种多样性分析[J]. 水土保持研究, 2013, 20 (5): 135-140 [Zhang HQ. Species diversity of plant community in the origin area of the Minjiang River, Southwestern China [J]. Res Soil Water Conserv, 2013, 20 (5): 135-140]
17 Zhu JT, Huang K, Liu YJ, Zu JX, Zhang YJ, Zhang J. The influences of climate change and human activities on vegetation dynamics in the Qinghai-Tibet Plateau [J]. Remote Sens, 2016, 8 (10): 876
18 Miehe G, Schleuss M P, Seeber E, Babel W, Biermann T, Braendle M, Chen FH, Coners H, Foken T, Gerken T, Graf HF, Guggenberger G, Hafner S, Holzapfel M, Ingrisch J, Kuzyakov Y, Lai ZP, Lehnert L, Wesche K. The Kobresia pygmaea ecosystem of the Tibetan highlands-Origin, functioning and degradation of the world’s largest pastoral alpine ecosystem [J]. Sci Total Environ, 2019, 648: 754-771]
19 Zhang Y, Welker JM. Global Warming impacts on alpine vegetation dynamic in Qinghai-Tibet Plateau of China [J]. J Geosci Environ Protec, 2014, 2: 54-59
20 Niu Y, Zhu H. The effects of topographical factors on the distribution of plant communities in a mountain meadow on the Tibetan Plateau as a foundation for target-oriented management [J]. Ecol Indic, 2019, 106: 105532
21 崔鹏, 贾洋, 苏凤环, 葛永刚, 陈晓清, 邹强. 青藏高原自然灾害发育现状与未来关注的科学问题[J]. 中国科学院院刊, 2017, 32 (9): 985-992 [Cui P, Jia Y, Su FH, Ge YG, Chen XQ, Zou Q. Natural hazards in Tibetan Plateau and key issue for feature research [J]. Bull CAS, 2017, 32 (9): 985-992]
22 Zhu X, Liu W, Chen H, Deng Y, Chen C, Zeng H. Effects of forest transition on litterfall, standing litter and related nutrient returns: Implications for forest management in tropical China [J]. Geoderma, 2019, 333: 123-134
23 马志良, 刘美, 赵文强, 朱攀, 刘庆. 岷江源头区林灌交错带地被物和土壤持水能力[J]. 水土保持学报, 2018, 32 (5): 146-150 [Ma ZL, Liu M, Zhao WQ, Zhu P, Liu Q. Water holding capacity of soils and ground covers in a forest-shrub ecotone of the source area of Minjiang River [J]. J Soil Water Conserv, 2018, 32 (5): 146-150]
24 M?hl P, M?rsdorf MA, Dawes MA, Hagedorn F, Bebi P, Viglietti D, Freppaz M, Wipf S, K?rner C, Thomas FM, Rixen C.Twelve years of low nutrient input stimulates growth of trees and dwarf shrubs in the treeline ecotone [J]. J Ecol, 2019, 107 (2): 768-780
25 Kui L, Sun H, Lei Q, Gao W, Bao LJ, Chen YX, Jia ZJ. Soil microbial community assemblage and its seasonal variability in alpine treeline ecotone on the eastern Qinghai-Tibet Plateau [J]. Soil Ecol Lett, 2019, 1 (1-2): 33-41
26 杨永红, 王飞, 曹秀文, 刘锦乾, 王若鉴, 李社勤, 徐德才, 王双燕. 甘南白龙江上游高山林线过渡区地被物及土壤水文特性[J]. 水土保持研究, 2018, 25 (2): 145-150 [Yang YH, Wang F, Cao XW, Liu JQ, Wang RJ, Li SQ, Xu DC, Wang SY. Surface cover and soil hydrological characteristics of alpine timberline ecotone in the upper reaches of Bailongjiang River [J]. Res Soil Water Conserv, 2018, 25 (2): 145-150]
27 周春梅, 刘琳, 申旭东, 高武超, 李其, 孙飞达, 赵景学, 周冀琼. 青藏高原东部高寒沙化草地中高山柳凋落叶分解特征的空间异质性[J]. 应用与环境生物学报, 2019, 25 (4): 808-816 [Zhou CM, Liu L, Shen XD, Gao WC, Li Q, Sun FD, Zhao JX, Zhou JQ. Spatial heterogeneity of the decomposition characteristics of the fitter leaf of Salix cupularis in an alpine desertified meadow ecosystem in the eastern Tibetan Plateau [J]. Chin J Appl Environ Biol, 2019, 25 (4): 808-816]
28 Wang D, He HL, Gao Q, Zhao CZ, Zhao WQ, Yin CY, Chen XL, Ma ZL, Li DD, Sun DD, Cheng XY, Liu Q. Effects of short-term N addition on plant biomass allocation and C and N pools of the Sibiraea angustata scrub ecosystem [J]. Eur J Soil Sci, 2017, 68 (2): 212-220
29 Zhu WY, Wang JZ, Zhang ZH, Ren F, Chen LT, He JS. Changes in litter quality induced by nutrient addition alter litter decomposition in an alpine meadow on the Qinghai-Tibet Plateau [J]. Sci Rep, 2016, 6: 34290
30 Rudenko O, Novenko E, Shumilovskikh L. Mid-late Holocene pollen records from the forest-steppe ecotone of the Central Russian Upland: Vegetation and fire history, human impact [J]. 2020: doi 10.13140/RG.2.2.32370.66243
31 刘洋, 张健, 闫帮国, 黄旭, 徐振锋, 吴福忠. 青藏高原东缘高山森林-苔原交错带土壤微生物生物量碳、氮和可培养微生物数量的季节动态[J]. 植物生态学报, 2012, 36 (5): 382-392 [Liu Y, Zhang J, Yan BG, Huang X, Xu ZF, Wu FZ. Seasonal dynamics in soil microbial biomass carbon and nitrogen and microbial quantity in a forest-alpine tundra ecotone, Eastern Qinghai-Tibetan Plateau, China [J]. Chin J Plant Ecol, 2012, 36 (5): 382-392]
32 Harper KA, Lavallée A, Dodonov P. Patterns of shrub abundance and relationships with other plant types within the forest-tundra ecotone in northern Canada [J]. Arct Sci, 2018, 4: 691-709
33 Mclaren JR, Buckeridge KM, van de Weg MJ, Shaver GR, Schimel JP, Gough L. Shrub encroachment in Arctic tundra: Betula nana effects on above‐ and belowground litter decomposition [J]. Ecology, 2017, 98 (5): 1361-1376
34 Yan WM, Zhong Y, Zhu GY, Liu WZ, Shangguan ZP. Nutrient limitation of litter decomposition with long-term secondary succession: evidence from controlled laboratory experiments [J]. J Soil Sed, 2020, 20: 1858-1868
35 Li YG, Zhou XB, Zhang YM. Shrub modulates the stoichiometry of moss and soil in desert ecosystems, China [J]. J Arid Land, 2019, 11: 579-594
36 Pang Y, Tian J, Zhao X, Chao Z, Wang YC, Zhang XP, Wang DX. The linkages of plant, litter and soil C:N:P stoichiometry and nutrient stock in different secondary mixed forest types in the Qinling Mountains, China [J]. PeerJ, 2020, 8: e9274
37 卫芯宇, 杨万勤, 张丽, 谭波, 谌亚, 董玉梁, 吴福忠. 冻融环境下凋落叶添加对亚高山森林土壤腐殖化程度的影响[J]. 生态学报, 2018, 38 (18): 6521-6529 [Wei XY, Yang WQ, Zhang L, Tan B, Chen Y, Dong YL, Wu FZ. Effects of litter addition on soil humification during freeze-thaw cycles in a subalpine forest [J]. Acta Ecol Sin, 2018, 38 (18): 6521-6529]
38 刘颖, 宫渊波, 李瑶, 朱德雯, 刘韩, 帅伟. 川西高寒灌丛草地不同海拔梯度土壤化学计量特征[J]. 四川农业大学学报, 2018, 36 (2): 167-174 [Liu Y, Gong YB, Li Y, Zhu DW, Liu H, Shuai W. Soil stoichiometric characteristics of alpine shrub meadow at different elevations, western Sichuan [J]. J Sichuan Agr Univ, 2018, 36 (2): 167-174]
39 Chen G, Liu S, Xiang Y, Tang X, Liu H, Yan B, Luo X. Impact of living mulch on soil C:N:P stoichiometry in orchards across China: A meta-analysis examining climatic, edaphic, and biotic dependency [J]. Pedosphere, 2020, 30 (2): 181-189
40 Tian HQ, Chen GS, Zhang C, Melillo JM, Hall CAS. Pattern and variation of C:N:P ratios in China’s soils: a synthesis of observational data [J]. Biogeochemistry, 2010, 98: 139-151
41 Sun J, Gao P, Li C, Wang R, Niu X, Wang B. Ecological stoichiometry characteristics of the leaf-litter-soil continuum of Quercus acutissima Carr. and Pinus densiflora Sieb. in northern China [J]. Environ Earth Sci, 2019, 78: 20
42 李明军, 喻理飞, 杜明凤, 黄宗胜, 石建华. 不同林龄杉木人工林植物-凋落叶-土壤C、N、P化学计量特征及互作关系[J]. 生态学报, 2018, 38 (21): 7772-7781 [Li MJ, Yu LF, Du MF, Huang ZS, Shi JH. C, N, and P stoichiometry and their interaction with plants, litter, and soil in a Cunninghamia lanceolata plantation with different ages [J]. Acta Ecol Sin, 2018, 38 (21): 7772-7781]
43 潘萍, 赵芳, 欧阳勋志, 臧颢, 宁金魁, 国瑞. 马尾松林两种林下植被土壤碳氮特征及其与凋落物质量的关系[J]. 生态学报, 2018, 38 (11): 3988-3997 [Pan P, Zhao F, Ouyang XZ, Zang H, Ning JK, Guo R. Characteristics of soil carbon and nitrogen and relationship with litter quality under different understory vegetation in Pinus massoniana plantations [J]. Acta Ecol Sin, 2018, 38 (11): 3988-3997]
44 蔡琴, 丁俊祥, 张子良, 胡君, 汪其同, 尹明珍, 刘庆, 尹华军. 青藏高原东缘主要针叶树种叶片碳氮磷化学计量分布格局及其驱动因素[J]. 植物生态学报, 2019, 43 (12): 1048-1060 [Cai Q, Ding JX, Zhang ZL, Hu J, Wang QT, Yin MZ, Liu Q, Yin HJ. Distribution patterns and driving factors of leaf C, N and P stoichiometry of coniferous species on the eastern Qinghai-Xizang Plateau, China [J]. Chin J Plant Ecol, 2019, 43 (12): 1048-1060]
45 杨欢, 尹春英, 郑东辉, 唐波, 赵文强, 李娜, 濮晓珍, 刘庆. 川西亚高山针叶林云杉和冷杉生长季和非生长季叶片碳氮磷化学计量特征[J]. 应用与环境生物学报, 2017, 23 (6): 1089-1095 [Yang H, Yin CY, Zheng DH, Tang B, Zhao WQ, Li N, Pu XZ, Liu Q. Leaf C:N:P stoichiometry in a growing season and nongrowing season of Picea asperata and Abies faxoniana, dominant tree species in subalpine coniferous forests of western Sichuan [J]. Chin J Appl Environ Biol, 2017, 23 (6): 1089-1095]
46 Shi PL, Wu N, Gopal SR. The distribution patterns of timberline and its response to climate change in the Himalayas [J]. J Resour Ecol, 2020, 11 (4): 342-348
47 Miehe G, Miehe S, Bach K, N?lling J, Hanspatch J, Redudenbach C, Kaiser K, Wesche K, Mosbrugger V, Yang YP, Ma YM. Plant communities of central Tibetan pastures in the alpine steppe/Kobresia pygmaea ecotone [J]. J Arid Environ, 2011, 75 (8): 711-723
48 Tian XK, Wang MY, Meng P, Zhang JS, Zhou BZ, Ge XG, Yu FH, Li MH. Native bamboo invasions into subtropical forests alter microbial communities in litter and soil [J]. Forests, 2020, 11: 314
49 周天阳, Narayan PG, 廖礼彬, 郑莉莉, 王金牛, 孙建, 魏彦强, 谢雨, 吴彦. 青藏高原东缘两处高山树线交错带时空动态及其建群种的生态学特征[J]. 植物生态学报, 2018, 42 (11): 1082-1093 [Zhou TY, Narayan PG, Liao LB, Zheng LL, Wang JN, Sun J, Wei YQ, Xie Y, Wu Y. Spatio-temporal dynamics of two alpine treeline ecotones and ecological characteristics of their dominate species at the eastern margin of Qinghai-Xizang Plateau [J]. Chin J Plant Ecol, 2018, 42 (11): 1082-1093]
50 王小沁, 陈玉雯, 孙辉, 李菊, 刘杨. 川西高山树线交错带海拔梯度上土壤有机碳稳定性特征[J]. 西北林学院学报, 2020, 35 (1): 1-7 [Wang XQ, Chen YW, Sun H, Li J, Liu Y. Stabilization of soil organic carbon in alpine treeline ecotone along altitudinal gradient in the west of Sichuan Province [J]. J NW For Univer, 2020, 35 (1): 1-7]


Last Update: 2021-10-25