|Table of Contents|

Genome-wide identification and expression analysis of HAT gene family in longan(PDF)

Chinese Journal of Applied & Environmental Biology[ISSN:1006-687X/CN:51-1482/Q]

Issue:
2021 05
Page:
1354-1363
Research Field:
Articles
Publishing date:

Info

Title:
Genome-wide identification and expression analysis of HAT gene family in longan
Author(s):
LI Xiaofei ZHANG Shuting SHEN Xu ZHANG Zihao CHEN Yukun LIN Yuling & LAI Zhongxiong?
Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
Keywords:
Dimocarpus longan Lour. acetylase gene genome-wide identification epigenetic regulation somatic embryogenesis expression pattern
CLC:
-
PACS:
DOI:
10.19675/j.cnki.1006-687x.2020.04051
DocumentCode:

Abstract:
Histone acetylase (HAT) is a histone lysine residue covalent modification component and plays a vital role in epigenetic regulation. To investigate the biological function and expression patterns of the HAT gene family in Dimocarpus longan Lour, we conducted genome-wide identification and bioinformatics analysis of the longan HAT gene family(DlHAT) based on a longan genome and transcriptome dataset. We detected the expression patterns of DlHAT in early somatic embryogenesis and different hormone treatments of longan by qRT-PCR.The results showed that the DlHAT gene family contains six members, namely DlHAC1, DlHAF1, DlHAM1, DlHAG1, DlHAG2, and DlHAG3. They were?distributed on six chromosomes of longan, all of which were hydrophilic proteins. Subcellular localization prediction showed that DlHAT was distributed in the nucleus and cytoplasm. Phylogenetic tree analysis showed that the DlHAT family could be divided into four categories: HAFs, HAGs, HACs, and HAMs, and the DlHAG family could be further divided into three subfamilies: GCN5, ELP3, and HAT1. Gene structure analysis revealed that the number of exons ranged from 8 to 30 in the DlHAT family, and most of their encoded proteins contained motif1, except for the HAG subfamily, HAFs, HACs, and HAMs subfamily encoded proteins containing motif6. The protein structure contained α-helix and random coils. The DlHAT promoter sequence contains many lights, hormones, stress, growth, and development-related cis-acting elements. qRT-PCR analyses of the early somatic embryos and different hormone treatments in longan revealed that DlHAF1, DlHAG1, and DlHAM1 were expressed at higher levels in the globular embryo (GE) stage, except for DlHAF, other DlHAT genes responded to salicylic acid (SA), methyl jasmonate (MeJA), abscisic acid (ABA), and gibberellin (GA3). The expression was upregulated after treatment with SA and GA3, and the expression levels were significantly upregulated at 8 h SA treatment and 4 h GA3 treatment. This study indicated that DlHAT is a conserved and species-specific characteristic during the evolution process and may be involved in long-term somatic embryonic development by responding to hormone regulation.

References

1 Huang LM, Sun QW, Qin FJ, Li C, Zhao Y, Zhou DX. Down-regulation of a SILENT INFORMATION REGULATOR2-related histone deacetylase gene, OsSRT1, innduces DNA fragmentation and cell death in rice [J]. Plant Physiol, 2007, 144 (3): 1508-1519
2 Wolffe AP, Hayes JJ. Chromatin disruption and modification [J]. Nucl Aci Res, 1999, 27 (3): 711-720
3 姜楠, 潘学峰. 表观遗传学及现代表观遗传生物医药技术的发展[J]. 生物技术通报, 2015, 31(4): 105-119 [Jiang N, Pan XF. Epigenetics and the development of modern epigenetic biomedical technology [J]. Biotechnol Bull, 2015, 31 (4): 105-119]
4 Waterborg JH. Plant histone acetylation: inn the beginning [J]. Bioch Biophy Acta, 2011, 1809 (8): 353-359
5 王俊宁. 香蕉果实转录组测序及HDACs参与果实成熟与冷害机制的研究[D]. 广州: 华南农业大学, 2012 [Wang JN. transcriptome sequencing of banana fruits and the study of mechanisms of fruit ripening and chilling injury involving HDACs [D]. Guangzhou: South China Agricultural University, 2012]
6 薛超. 水稻盐胁迫下组蛋白乙酰化修饰特征及HATs相关基因的功能研究[D]. 扬州: 扬州大学, 2019 [Xue C. Characteristic analysis?of?histone?acetylation?dynamics?under salt?stress?and functional analysis of?HATs?in?rice [D]. Yangzhou: Yangzhou University, 2019]
7 Pandey R, Müller A, Napoli CA, Selinger DA, Pikaard CS, Richards EJ, Bender J, Mount DW, Jorgensen RA. Analysis of histone acetyltransferase and histone deacetylase families of Arabidopsis thaliana suggests functional diversification of chromatin modification among multicellular eukaryotes [J]. Nucl Aci Res, 2002, 30 (23): 5036-5055
8 Cigliano RA, Sanseverino W, Cremona G, Ercolano MR, Conicella C, Consiglio FM. Genome-wide analysis of histone modifiers in tomato: gaining an insight into their developmental roles [J]. BMC Genom, 2013, 14 (1): 57
9 Xu JD, Xu HD, Liu YL, Wang X, Xu Q, Deng XX. Genome-wide identification of sweet orange (Citrus sinensis) histone modification gene families and their expression analysis during the fruit development and fruit-blue mold infection process [J]. Front Plant Sci, 2015, 6: 607
10 Peng MJ, Ying PY, Liu XC, Li CQ, Xia R, Li JG, Zhao ML. Genome-wide identification of histone modifiers and their expression patterns during fruit abscission in Litchi [J]. Front Plant Sci, 2017, 8: 639
11 Herceg Z, Li H, Cuenin C, Shukla V, Radolf M, Wang ZQ. Genome-wide analysis of gene expression regulated by the HAT cofactor trrap in conditional knockout cells [J]. Nucl Aci Res, 2003, 31 (23): 7011-7023
12 Jeffrey CZ, Lu T. Roles of dynamic and reversible histone acetylation in plant development and polyploidy [J]. BBA Gene Str Exp, 2007, 1769 (5): 295-307
13 Xiao J, Zhang H, Xing LJ, Xu SJ, Liu HH, Chong K, Xu YY. Requirement of histone acetyltransferases HAM1 and HAM2 for epigenetic modification of FLC in regulating flowering in Arabidopsis [J]. J Plant Physiol, 2013, 170 (4): 444-451
14 肖旭峰, 张袆, 杨寅桂. 菜心组蛋白乙酰转移酶基因BrcuHAC1克隆与表达分析[J]. 核农学报, 2017, 31 (12): 2323-2331 [Xiao XF, Zhang W, Yang YG. Cloning and expression analysis of BrcuHAC1 gene for histone acetyltransferase in Chinese cabbage [J]. Chin J Nucl Agric, 2017, 31 (12): 2323-2331]
15 Heisel TJ, Li CY, Grey KM, Gibson SI. Mutations in histone acetyltransferase1 affect sugar response and gene expression in Arabidopsis [J]. Front Plant Sci, 2013, 4 (2): 245
16 Perrella G, Consiglio MF, Aiese-Cigliano R, Cremona G, Sanchez-Moran E, Barra L, Errico A, Bressan RA, Franklin FCH, Conicella C. Histone hyperacetylation affects meiotic recombination and chromosome segregation in Arabidopsis [J]. Plant J, 2010, 62 (5): 796-806
17 Kim WH, Benhamed M, Servet C, Latrasse D, Zhang W, Delarue M, Zhou DX. Histone acetyltransferase GCN5 interferes with the miRNA pathway in Arabidopsis [J]. Cell Res, 2009, 19 (7): 899-909
18 Fang H, Liu X, Thorn G, Duan J, Tian LN. Expression analysis of histone acetyltransferases in rice under drought stress [J]. Biochem Biophy Res Comm, 2014, 443 (2): 400-405
19 Liu X, Luo M, Zhang W, Zhao JH, Zhang JX, Wu KQ, Tian LN, Duan J. Histone acetyltransferases in rice (Oryza sativa L.): phylogenetic analysis, subcellular localization and expression [J]. BMC Plant Biol, 2012, 12 (1): 1-17
20 Nguyen VL. 番茄组蛋白乙酰转移酶基因SlHAG14的克隆及功能研究[D]. 重庆: 重庆大学, 2017 [Nguyen VL. Cloning and functional analysis of histone acetylase gene (SlHAG14) in tomato (Solanum lycopersicum) [D]. Chongqing: Chongqing University, 2017]
21 Li C, Xu J, Li J, Li QY, Yang HC. Involvement of Arabidopsis histone acetyltransferase HAC family genes in the ethylene signaling pathway [J]. Plant Cell Physiol, 2014, 55 (3): 426-435
22 Servet C, Conde N, Zhou DX. Histone acetyltransferase AtGCN5/HAG1 is a versatile regulator of developmental and inducible gene expression in Arabidopsis [J]. Mol Plant, 2010, 3 (4): 670-677
23 Chen YK, Xu XP, Chen XH, Chen Y, Zhang ZH, Xu HX, Lin YL, Lai ZX. Seed-specific gene MOTHER of FT and TFL1 (MFT) involved in embryogenesis, hormones and stress responses in Dimocarpus longan Lour. [J]. Int J Mol Sci, 2018, 19 (8): 2403
24 赖钟雄. 龙眼生物技术研究[M]. 福州: 福建科学技术出版社, 2003 [Lai ZX. Biotechnology Research of Longan [M]. Fuzhou: Fujian Science and Technology Press, 2003]
25 Lin YL, Lai ZX. Reference gene selection for qPCR analysis during somatic embryogenesis in longan tree [J]. Plant Sci, 2010, 178 (4): 359-365
26 Wang L, Dent SY. Functions of SAGA in development and disease [J]. Epigenomics, 2014, 6 (3): 329-339
27 Weake VM, Workman JL. SAGA function in tissue-specific gene expression [J]. Trends Cell Biol, 2012, 22 (4): 177-184
28 Lusser A, Eberharter A, Loidl A, Goralik-Schramel M, Horngacher M, Haas H, Loidl P. Analysis of the histone acetyltransferase B complex of maize embryos [J]. Nucl Aci Res, 1999, 27 (22): 4427-4435
29 Filippakopoulos P, Picaud S, Mangos M, Keates T, Lambert JP, Barsyte-Lovejoy D, Felletar I, Volkmer R, Müller S, Pawson T, Gingras AC, Arrowsmith CH, Knapp S. Histone recognition and large-scale structural analysis of the human bromodomain family [J]. Cell, 2012, 149 (1): 214-231
30 Winston F, Allis CD. The bromodomain: a chromatin-targeting module? [J]. Nat Struct Biol, 1999, 6 (7): 601-604
31 李田, 孙景宽, 刘京涛. 植物启动子研究进展[J]. 生物技术通报, 2015, 31 (2): 18-25 [Li T, Sun JK, Liu JT. Research progress on plant promoters [J]. Biotechnol Bull, 2015, 31 (2): 18-25]
32 Li C, Xu J, Li J, Li QY, Yang HC. Involvement of Arabidopsis HAC family genes in pleiotropic developmental processes [J]. Plant Sign Behav, 2014, 9 (2): 426-435
33 Hu ZR, Song N, Zheng M, Liu XY, Liu ZS, Xing JW, Ma JH, Guo WW, Yao YY, Peng HR, Xin MM, Zhou DX, Ni ZF, Sun QX. Histoneacetyltransferase GCN5 is essential for heat stress-responsive gene activation and thermotolerance in Arabidopsis [J]. Plant J, 2015, 84 (6): 1178-1191
34 Zhou?SL,?Jiang?W,?Long?F, Cheng?SF,?Yang?WJ,?Zhao?Y, Zhou DX. Rice?Homeodomain?protein WOX11 recruits?a?histone acetyltransferase complex?to?establish?programs of?cellproliferation of?crown?root?meristem [J].?Plant?Cell,?2017,?29 (5):?1088-1104
35 Benhamed M, Martin-Magniette M, Taconnat L, Bitton F, Servet C, Clercq RD, Meyer BD, Buysschaert C, Rombauts S, Villarroel R, Aubourg S, Beynon J, Bhalerao RP, Coupland G, Gruissem W, Menke Frank LH, Weisshaar B, Renou JP, Zhou DX, Hilson P. Genome-scale Arabidopsis promoter array identifies targets of the histone acetyltransferase GCN5 [J]. Plant J, 2008, 56 (3): 493-504
36 Eberharter A, Lechner T, Goralik-Schramel M, Loidl P. Purification and characterization of the cytoplasmic histone acetyltransferase B of maize embryos [J]. FEBS Lett, 1996, 386 (1): 75-81
37 K?lle D, Sarg B, Lindner H, Loidl P. Substrate and sequential site specificity of cytoplasmic histone acetyltransferases of maize and rat liver [J]. FEBS Lett, 1998, 421 (2): 109-114
38 Guo WW, Yang H, Liu YQ, Gao YJ, Ni ZF, Peng HR, Xin MM, Hu ZR, Sun QX, Yao YY. The wheat transcription factor TaGAMyb recruits histone acetyltransferase and activates the expression of a high-molecular-weight glutenin subunit gene [J]. Plant J, 2015, 84 (2): 347-359
39 Zhang L, Qiu ZM, Hu Y, Yang F, Yan SH, Zhao L, Li B, He SB, Huang M, Li J, Li LJ. ABA treatment of germinating maize seeds induces VP1 gene expression and selective promoter-associated histone acetylation [J]. Physiol Plant, 2011, 143 (3): 287-296
40 Yang XY, Zhang XL. Regulation of somatic embryogenesis in higher plants [J]. Cri Rev Plant Sci, 2010, 29 (1): 36-57
41 Langhansová L, Konrádová H, Vaněk T. Polyethylene glycol and abscisic acid improve maturation and regeneration of Panax ginseng somatic embryos [J]. Plant Cell Rep, 2004, 22 (10): 725-730
42 崔凯荣, 裴新梧, 秦琳, 王君健, 王亚馥. ABA对枸杞体细胞胚发生的调节作用[J]. 分子细胞生物学报, 1998, 31 (2): 195-201 [Cui KR, Pei XW, Qin L, Wang JJ, Wang YF. Regulation of ABA on Lycium barbarum somatic embryogenesis [J]. J Mol Cell Biol, 1998, 31 (2): 195-201]
43 赖钟雄, 陈春玲. 龙眼体细胞胚胎发生过程中的内源激素变化[J]. 热带作物学报, 2002, 23 (2): 41-47 [Lai ZX, Chen CL. Changes of endogenous phytohormones in the process of somatic embryogenesis in longan (Dimocarpus longan Lour.) [J]. Chin J Trop Crops, 2002, 23 (2): 41-47]

Memo

Memo:
-
Last Update: 2021-10-25