|Table of Contents|

Phytostabilization response in polymetallic soil contaminated with heavy metal leaching using?a simulated acidic rainfall in the Dabao mountain mine dump

Chinese Journal of Applied & Environmental Biology[ISSN:1006-687X/CN:51-1482/Q]

Issue:
2019 03
Page:
473-481
Research Field:
Publishing date:

Info

Title:
Phytostabilization response in polymetallic soil contaminated with heavy metal leaching using?a simulated acidic rainfall in the Dabao mountain mine dump
Author(s):
LAN Moming1 2 3 ZHANG Peng1 2 3 GAO Yichun1 2 3 YANG Wenjun1 2 3 TANG Yetao1 2 3** & QIU Rongliang1 2 3
1 School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China 2 Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology (Sun Yat-sen University), Guangzhou 510275, China 3 Guangdong Provincial Engineering Research Center for Heavy Metal Contaminated Soil Remediation, Sun Yat-sen University, Guangzhou 510275, China
Keywords:
Dabao mountain mine dump leaching kenaf ramie available heavy metal
CLC:
X53
PACS:
DOI:
10.19675/j.cnki.1006-687x.201812063
DocumentCode:

Abstract:
The soil of Dabao mountain mine dump in Shaoguan, Guangdong has been severely contaminated by heavy metals. Using a leaching experiment with simulated local acidic rainfall, the effect of soil amendment and plantation of kenaf (Hibiscus cannabinus) and ramie (Boehmeria nivea L.) on the migration of heavy metal was studied. The result showed that the addition of 0.4% lime and 0.2% organic fertilizer to the soil column (0-10 cm) significantly increased the pH of leaching solution and greatly reduced the available heavy metal content in the soil column. After planting kenaf and ramie, the pH of leachate was significantly higher than that of the blank group while the leaching loss in leachate decreased by 32.5% and 12.4%, respectively. The decrease in Pb, Zn, Cu, and Cd content in the leachate as a result of planting kenaf and ramie was 65.2% and 71.3%, 81.6% and 78.5%, 79.4% and 71.7%, 86.7% and 85.3%, respectively, compared with the blank treatment. After planting kenaf and ramie, compared with the blank treatment, the availability of Pb, Zn, Cu, and Cd in the lower layer of soil column (21-30 cm) decreased by 16.3% and 22.9%, 30.5% and 17.9%, 18.8% and 32.5%, 38.1% and 29.7%, respectively, compared with the blank treatment. Planting kenaf?and ramie can not only reduce the leaching loss significantly, but also?cut down the heavy metal concentration in leachate, thereby reducing?the?pollution of groundwater caused by leachate. A study of the pattern of planting kenaf and ramie and applying it to treat heavy metal-contaminated soil using simulated acidic rainfall has great utilization potential in phytostabilization.

References

1. 应立娟, 王登红, 李超, 王阔, 王开建, 王兰根, 王要武, 张熊, 蒋金昌. 广东大宝山北部层状矿体硫化物Re-Os测年及指示[J]. 地学前缘, 2017, 24 (5): 31-38 [Ying LJ, Wang DH, Li C, Wang K, Wang KJ, Wang LG, Wang YW, Zhang X, Jiang JC. Re-Os dating of sulides in the north stratiform ore body in dication [J]. Earth Sci Front, 2017, 24 (5): 31-38]
2. 张晗, 靳青文, 黄仁龙, 林宁, 贾珍珍, 舒月红. 大宝山矿区农田土壤重金属污染及其植物累积特征[J]. 土壤, 2017, 49 (1): 141-149 [Zhang H, Jin WQ, Huang RL, Lin N, Jia ZZ, Shu YH. Characteristics of heavy metal pollution in agricultural soils and bioaccumulation in plants of Dabaoshan Mine [J]. Soils, 2017, 49 (1): 141-149]
3. 水德聚, 王晓艳, 邵勤, 叶利勇, 孙继, 汪炳良. 模拟酸雨胁迫对油冬菜生理特性的影响[J]. 南方农业学报, 2016, 47 (7): 1155-1158 [Shui JD, Wang XY, Shao Q, Ye LY, Sun J, Wang BL. Effects of simulated acid rain stress on physiological characteristics of Brassica chinensis L. [J]. J S Agric, 2016, 47 (7): 1155-1158]
4. 陈希, 陈伏生, 叶素琼, 喻苏琴, 方向民, 胡小飞. 丘陵红壤茶园根际氮磷转化对不同强度酸雨胁迫的响应[J]. 应用生态学报, 2015, 26 (1): 1-8 [Chen X, Chen FS, Ye SQ, Yu SQ, Fang XM, Hu XF. Responses of rhizosphere nitrogen and phosphorus transformations to different acid rain intensities in a hilly red soil tea plantation [J]. Chin J Appl Ecol, 2015, 26 (1): 1-8]
5. Uchimiya M, Lima IM, Klasson KT, Wartelle LH. Contaminant immobilization and nutrient release by biochar soil amendment: Roles of natural organic matter [J]. Chemosphere, 2010. 80 (8): 935-940
6. Gu L, Zhu NW, Wang L. Combined humic acid adsorption and enhanced Fenton processes for the treatment of naphthalene dye intermediate wastewater [J]. J Haz Mat, 2011, 198: 232-240
7. 邹富桢, 龙新宪, 余光伟, 黄莉敏, 赵仁欣. 混合改良剂钝化修复酸性多金属污染土壤的效应——基于重金属形态和植物有效性的评价[J]. 农业环境科学学报, 2017, 36 (9): 1787-1795 [Zou FZ, Long XX, Yu GW, Huang ML, Zhao RX. In-situ remediation of a multi-metal contaminated acid soil using organic-inorganic mixed amendments——Evaluation by heavy metal fraction sand phytoavailability [J]. J Agro-Environ Sci, 2017, 36 (9): 1787-1795]
8. 杨帅, 高照良, 白皓, 罗珂, 李玉亭婷, 齐星圆. 矿山废弃地植物种植模式对土壤改良效果[J]. 水土保持学报, 2017, 31 (3): 134-140 [Yang S, Gao ZL, Bai H, Luo K, Li YTT, Qi XY. Soil improvement effects of planting patterns on mining abandoned lands on the Loess Plateau [J]. J Soil Water Conserv, 2017, 31 (3): 134-140]
9. Zhou GH, Huang HZ, He HL. Phytoremediation: a new approach for the remediation of heavy metal-contaminated soils [J]. Techn Equip Environ Poll Contr, 2002, 3 (6): 33-39
10. 陈燕玫, 柏珺, 杨煜曦, 王诗忠, 杨秀虹, 仇荣亮. 植物根际促生菌辅助红麻修复铅污染土壤[J]. 农业环境科学学报, 2013, 32 (11): 2159-2167 [Chen YM, Bai J, Yang YX, Wang SZ, Yang XH, Qiu RL. Phytoremediation of Pb polluted soil by kenaf with assistance of plant growth promoting rhizobectrium (PGPR) [J]. J Agro-Environ Sci, 2013, 32 (11): 2159-2167]
11. 万雪贝, 徐建堂, 李东旭, 林荔辉, 祁建民, 张立武. 红麻微卫星DNA标记指纹图谱的构建[J]. 植物遗传资源学报, 2018, 19 (1): 87-95 [Wan XB, Xu JT, Li DX, Lin ZH, Qi JM, Zhang LW. Construction of DNA finger printing in Kenaf (Hibiscus cannabinus) using microsatellite markers [J]. J Plant Gen Res, 2018, 19 (1): 87-95]
12. 刘金, 殷宪强, 孙慧敏, 吕家珑, 韦革宏. EDDS与EDTA强化苎麻修复镉铅污染土壤[J]. 农业环境科学学报, 2015, 34 (7): 1293-1300 [Liu J, Yin XQ, Sun HM, Lü JL, Wei GH. EDTA and EDDS enhanced remediation of Cd and Pb contaminated soil by ramie (Boehmeria nivea) [J]. J Agro-Environ Sci, 2015, 34 (7): 1293-1300]
13. 简敏菲, 杨叶萍, 余厚平, 叶嘉敏, 金聪. 德兴铜矿区优势物种苎麻(Boehmeria nivea)对重金属的富集与积累特性[J]. 生态与农村环境学报, 2016, 32 (3): 486-491 [Jian MF, Yang YP, Yu HP, Ye JM, Jin C. Heavy metal enrichment and bioaccumulation characteristics of Boehmeria nivea, a dominant species of plant growing in Dexing Mining Area of Jiangxi Province [J]. J Ecol Rural Environ, 2016, 32 (3): 486-491]
14. 张彩霞, 肖金香, 叶清, 杨晓光, 郭建平. 1951-2010年南方晚稻气候适宜度时空变化特征分析[J]. 江西农业大学学报, 2016, 38 (4): 792-804 [Zhang CX, Xiao JX, Ye Q, Yang XG, Guo JP. Variation characteristics of climate suitability for late rice in southern China from 1951 to 2010 [J]. J Jiangxi Agric Univ, 2016, 38 (4): 792-804]
15. 郑顺安, 陈春, 郑向群, 刘书田, 师荣光, 刘潇威. 模拟降雨条件下 22 种典型土壤镉的淋溶特征及影响因子分析[J]. 环境化学, 2013, 32 (5): 867-873 [Zheng SA, Chen C, Zheng XQ, Liu ST, Shi RG, Liu XW. Effect of simulated rain on leaching of cadmium from 22 typical soils and key factors identification [J]. Environ Chem, 2013, 32 (5): 867-873]
16. 孙娟, 喻义勇, 柏松, 朱志峰. 大气环境降水监测的质量控制方法[J]. 化学分析计量, 2016, 25 (4): 98-101 [Sun J, Yu YY, Bai S, Zhu ZF. Quality control method of precipitation monitoring in atmospheric environment [J]. Chem Analys Met, 2016, 25 (4): 98-101]
17. 刘思言, 陈瑾, 卢平, 李来胜, 陈中颖. 广东韶关地区大气氮干湿沉降特征研究[J]. 生态环境学报, 2014, 23 (9): 1445-1450 [Liu SY, Chen J, Lu P, Li LS, Chen ZY. Dry and wet atmospheric deposition of nitrogen into Shaoguan, Guangdong Province [J]. Ecol Environ Sci, 2014, 23 (9): 1445-1450]
18. Pérez-de-Mora A, Burgos P, Madejón E. Microbial community structure and function in a soil contaminated by heavy metals: effects of plant growth and different amendments [J]. Soil Biol Biochem, 2006, 38 (2): 327-341.
19. 鲍士旦. 土壤农化分析[M]. 北京: 中国农业出版社, 2000 [Bao SD. Soil Agricultural Chemistry Analysis [M]. Beijing: China Agriculture Press, 2002]
20. Gupta AK, Sinha S. Assessment of single extraction methods for the prediction of bioavailability of metals to Brassica juncea L. Czern. (var. vaibhav) grown on tannery waste contaminated soil [J]. J Haz Mat, 2007, 149 (1): 144-150
21. Chen CT, Chen TH, Lo KF, Chiu CY. Effects of proline on copper transport in rice seedlings under excess copper stress [J]. Plant Sci, 2004, 166 (1): 103-111
22. 许田芬, 谢方文, 吴启堂, 胡启智, 朱凰榕. 植物处理污泥对华南红壤淋出液重金属的影响[J]. 环境污染与防治, 2013, 35 (6): 10-15 [Xu TF, Xie WF, Wu QT, Hu QZ, Zhu HR. Effect of phyto-treated sewage sludge on heavy metals leaching from red soils of South China [J]. Environ Poll Contr, 2013, 35 (6): 10-15]
23. 陈海滨, 马秀丽, 陈志彪, 陈志强. 南方稀土矿区水土保持植物根际土壤碳氮及pH特征[J]. 土壤学报, 2016, 53 (5): 1334-1341 [Chen HB, Ma XL, Chen ZB, Chen ZQ. Carbon, nitrogen and pH in rhizosphere of soil-water conserving plants in rare earth mining area in South China[J]. Acta Pedol Sin, 2016, 53 (5): 1334-1341
24. 陈世发. ENSO对韶关市1951~2013年降雨侵蚀力影响研究[J]. 地理科学, 2016, 10: 1573-1580 [Chen SF. Impact of ENSO on rainfall erosivity in Shaoguan City during 1951-2013[J]. Sci Geogr Sin, 2016, 10: 1573-1580]
25. Chen Y, Zhang Y, Chen G. Remediation of heavy metal contaminated soils by lime: a review [J]. Ecol Environ Sci, 2016.
26. Saengwilai P, Meeinkuirt W, Pichtel J, Koedrith P. Influence of amendments on Cd and Zn uptake and accumulation in rice (Oryza sativa L.) in contaminated soil [J]. Environ Sci Pollut Res, 2017, 24 (18): 1-12
27. 崔斌, 朱美霖, 姜阳, 蒋艳雪, 曹红斌, 李晓兵. 尾矿重金属的释放迁移及其生物有效性研究概述[J]. 环境科学与技术, 2014, 37 (7): 12-19 [Cui B, Zhu ML, Jiang Y, Jiang XY, Cao HB, Li XB. Review on release and migration and bioavailability of heavy metals in tailings [J]. Environ Sci Technol, 2014, 37 (7): 12-19]
28. 苏光明, 胡恭任, 毛平平, 于瑞莲. 模拟酸雨对泉州市交通区表层土壤重金属淋溶的累积释放特征[J]. 地球与环境, 2013, 41 (5): 512-517 [Su GM, Hu GR, Mao PP, Yu RL. Release characteristics of heavy metals in the traffic-area topsoil leached by simulated acid rain [J]. Earth Environ, 2013, 41 (5): 512-517]
29. 姜艳兴, 李德先, 高洋, 张靖, 汪福顺. 奥北大宝山矿区土壤和尾矿中重金属的淋滤释放危害分析[J]. 生态学杂志, 2013, 32 (4): 1038-1044 [Jiang YX, Li DX, Gao Y, Zhang J, Wang FS. Hazard assessment of soil-and mine tailings heavy metals leaching in Dabaoshan mining area of northern Guangdong, South China [J]. Chin J Ecol, 2013, 32 (4): 1038-1044]
30. 王兰, 刘方, 王俭, 王金娟. 铅锌矿扎酸性淋溶下重金属释放特征及其对植物幼苗生长的影响[J]. 生态学杂质, 2010, 29 (6): 1121-1126 [Wang L, Liu F, Wang J, Wang JJ. Release characteristics of heavy metals in Pb/Zn tailings under acid leaching and the effects of leachate on plant seedlings growth [J]. Chin J Ecol, 2010, 29 (6): 1121-1126]
31. Willscher S, Jablonski L, Fona Z, Rahmi R, Wittig, J. Phytoremediation experiments with Helianthus tuberosus, under different pH and heavy metal soil concentrations[J]. Hydrometallurgy, 2016, 168.
32. Saengwilai P, Meeinkuirt W, Pichtel J, Koedrith P. Influence of amendments on Cd and Zn uptake and accumulation in rice (Oryza sativa L.) in contaminated soil [J]. Environ Sci Pollut Res, 2017, 24 (18): 1-12
33. 刘孝利, 曾昭霞, 铁柏清, 叶长城, 周俊驰, 雷鸣. 酸雨区不同用地类型土壤有效态Cd含量季节变化及关键影响因子[J]. 环境科学, 2017, 38 (9): 3882-3887 [Liu XL, Zeng ZX, Tie BQ, Ye CC, Zhou JC, Lei M. Major factors influencing the Cd content and seasonal dynamics in different land cover soils in a typical acid rain region [J]. Environ Sci, 2017, 38 (9): 3882-3887]
34. 吴萍萍, 王家嘉, 李录久, 李敏. 模拟酸雨条件下生物炭对污染林地土壤重金属淋失和有效性的影响[J]. 水土保持学报, 2016, 30 (3): 115-119 [Wu PP, Wang J, Li LJ, Li Min. Effects of biochar on heavy metal leaching and availability in contaminated forest soil under simulated acid rain condition [J]. J Soil Water Conserv, 2016, 30 (3): 115-119]
35. 刘继东, 任杰, 陈娟, 刘小莲, 徐刚, 吴明红, 杜平. 酸雨淋溶条件下赤泥中重金属在土壤中的迁移特性及其潜在危害[J]. 农业环境科学学报, 2017, 36 (1): 76-84 [Liu JD, Ren J, Chen J, Liu XL, Xu G, Wu MH, Du P. Migration characteristics and potential hazards of heavy metals from bauxite residue to soil under simulated acid rain [J]. J Agro-Environ Sci, 2017, 36 (1): 76-84]
36. 魏祥东, 邹慧玲, 铁柏清, 陈焕, 蔡丹, 蔡蕾, 方雅瑜, 尹晓辉. 种植模式对南方旱地重金属含量及其迁移规律的影响[J]. 农业环境科学学报, 2015, 34 (6): 1096-1106 [Wei XD, Zou HL, Tie BQ, Chen H, Cai D, Cai L, Fang YY, Yin XH. Effects of different planting patterns on concentrations and migration of soil heavy metals in dryland in southern China [J]. J Agro-Environ Sci, 2015, 34 (6): 1096-1106]
37. Mille FS, Kilminster KL, Degens B, Firns GW. Relationship between metals leached and soil type from potential acid sulphate soils under acidic and neutral conditions in estern Australia [J]. Water Air Soil Pollut, 2010, 205 (1-4) : 133- 147.
38. Guerinot ML, Eide D. Zeroing in on zinc uptake in yeast and Plants [J]. Curr Opin Plant Biol, 1999, 2: 244-249
39. 郜红建, 蒋新, 常江, 王代长, 赵振华, 卞永荣. 根分泌物在污染土壤生物修复中的作用[J]. 生态学杂志, 2004, 23 (4): 135-139 [Gao HJ, Jiang X, Chang J, Wang DZ, Zhao ZH, Bian YR. Effects of root exudates in the bioremediation of contaminated soils [J]. Chin J Ecol, 2004, 23 (4): 135-139]
40. 何池全, 李蕾, 顾超. 重金属污染土壤的湿地生物修复技术[J]. 生态学杂志, 2003, 22 (5): 78-81 [He CQ, Li L, Gu C. Phytoremediation techniques of heavy metal in sewage sludge [J]. Chin J Ecol, 2003, 22 (5): 78-81]
41. 曹裕松, 李志安, 邹碧. 根际环境的调节与重金属污染土壤的修复[J]. 生态环境, 2003, 12 (4): 493-497 [Cao YS, Li ZA, Zou B. Regulation of rhizosphere and remediation of polluted soil by heavy metal [J]. Ecol Environ, 2003, 12 (4): 493-497]
42. 杨洋, 铁柏清, 张鹏, 陈喆, 白梅. 降雨和植被覆盖对土壤重金属流失的影响[J]. 水土保持学报, 2011, 25 (1): 39-42 [Yang Y, Tie BQ, Zhang P, Chen Z, Bai M. Effect of rainfall and vegetation coverage on runoff loss of heavy metals from soil [J]. J Soil Water Conserv, 2011, 25 (1): 39-42]

Memo

Memo:
-
Last Update: 2019-06-25