|Table of Contents|

Effects of cadmium passivation bacteria on the growth and cadmium adsorption of rice seedlings

Chinese Journal of Applied & Environmental Biology[ISSN:1006-687X/CN:51-1482/Q]

Issue:
2019 03
Page:
524-531
Research Field:
Publishing date:

Info

Title:
Effects of cadmium passivation bacteria on the growth and cadmium adsorption of rice seedlings
Author(s):
TAN Gaowei1 WEI Buchun1 CUI Yongliang2 CHEN Xianggui1 YAN Min1 SHEN Tian1 QIN Shijie1 YANG Xin1 JIANG Xin1 & YU Xiumei1**
1 College of Resources, Sichuan Agricultural University, Chengdu 611130, China; 2 Natural Resources Research Institute of Sichuan Province, Chengdu 610041, China
Keywords:
cadmium passivation bacteria rice seedling growth promoting
CLC:
X172 : X53
PACS:
DOI:
10.19675/j.cnki.1006-687x.201812006
DocumentCode:

Abstract:
Whether heavy metal-passivating microorganisms affect crop growth and the uptake of soil heavy metals is not clear. This study focuses on the effects of cadmium (Cd)-resistant bacteria on the growth of and Cd uptake in rice seedlings under Cd stress. The cadmium-passivating bacteria, Bacillus subtilis CDR-1, Bacillus aryabhattai CDR-2, and Providencia rettgeri CDR-3, were derived from cadmium-contaminated paddy soil, inoculated into the rhizosphere of rice seedlings, and their effects on the growth and cadmium absorption of rice were analyzed by measuring the growth biomass and cadmium content of these rice seedlings. The lowest inhibition concentrations of Cd2+ in CDR-1, CDR-2, and CDR-3 were 200 mg/L, 200 mg/L, and 400 mg/L, respectively. Their Cd2+ passivation rates were 100% in a 20 mg/L Cd2+ solution. The Cd2+ passivation rate decreased with increase in Cd2+ concentration. Under 5 mg/L and 10 mg/L of Cd2+ stress, the three bacterial strains exhibited different degrees of effects on the growth of rice seedlings, and all of them could significantly reduce the cadmium content in the root and over-the-ground parts of the rice seedlings. Among the three strains of bacteria, the role of CDR-1 in promoting growth and decreasing cadmium content in rice seedlings is the best. Under 0.5 mg/kg, 1 mg/kg, and 2 mg/kg of Cd2+ stress, CDR-1 can still significantly promote growth, increase the biomass, and reduce the content of cadmium in the root and over-the-ground parts of rice seedlings by 34.88%-61.63%. This study showed that the Cd2+-passivating bacteria can significantly reduce cadmium uptake in rice seedlings, and the Cd2+ passivating and growth promoting bacteria CDR-1 can be used for the bioremediation of cadmium-contaminated farmland soil.

References

1. Zhao XM, Yao LA, Ma QL, Zhou GJ, Wang L, Fang QL, Xu ZC. Distribution and ecological risk assessment of cadmium in water and sediment in Longjiang River, China: Implication on water quality management after pollution accident [J]. Chemosphere, 2018, 196: 107-116
2. Wu G, Kang HB, Zhang XY, Shao HB, Chu LY, Ruan CJ. A critical review on the bio-removal of hazardous heavy metals from contaminated soils: Issues, progress, eco-environmental concerns and opportunities [J]. J Hazard Mater, 2010, 174: 1-8
3. 李启全, 张少尧, 代天飞, 高雪松, 张新, 王昌全, 袁大刚, 李坤蓉. 成都平原农地土壤镉含量特征及来源研究[J]. 农业环境科学学报, 2014, 33 (5): 898-906 [Li QQ, Zhang SY, Dai TF, Gao XS, Zhang X, Wang CQ, Yuan DG, Li KR. Contents and sources of cadmium in farmland soils of Chengdu Plain, China [J]. J Agro-Environ Sci, 2014, 33 (5): 898-906]
4. 田效琴, 李卓, 刘永红. 成都平原农田镉污染情况及油菜镉吸收特征[J]. 农业环境科学学报, 2017, 36 (3): 496-506 [Tian XQ, Li Z, Liu YH. Characteristics of cadmium uptake by rape (B. junica) grown in cadmium contaminated farmland on Chengdu Plain [J]. J Agro Environ Sci, 2017, 36 (3): 496-506]
5. Mitra S, Pramanik K, Ghosh PK, Soren T, Sarkar A, Dey RS, Pandey S, Maiti TK. Characterization of Cd-resistant Klebsiella michiganensis MCC3089 and its potential for rice seedling growth promotion under Cd stress [J]. Microbiol Res, 2018, 210: 12-25
6. Liu XM, Zhong LB, Meng J, Wang F, Zhang JJ, Zhi YY, Zeng LZ, Xu JM. A multi-medium chain modeling approach to estimate the cumulative effects of cadmium pollution on human health [J]. Environ Pollut, 2018, 239: 208-31
7. Pramanik K, Mitra, S, Sarkar A, Maiti TK. Alleviation of phytotoxic effects of cadmium on rice seedlings by cadmium resistant PGPR strain Enterobacter aerogenes MCC 3092 [J]. J Hazard Mater, 2018, 351: 317-329
8. Li H, Luo N, Li YW, Cai QY, Li HY, Mo CH. Cadmium in rice: Transport mechanisms, influencing factors, and minimizing measures [J]. Environ Pollut, 2017, 224: 622-630
9. Lin XY, Mou RX, Cao ZY, Xu P, Wu XL, Zhu ZW, Chen MX. Characterization of cadmium-resistant bacteria and their potential for reducing accumulation of cadmium in rice grains [J]. Sci Total Environ, 2016, 569-570: 97-104
10. Li Y, Pang HD, He LY, Wang Q, Sheng XF. Cd immobilization and reduced tissue Cd accumulation of rice (Oryza sativa wuyun-23) in the presence of heavy metal-resistant bacteria [J]. Ecotoxicol Environ Saf, 2017, 138: 56-63
11. 张锡洲, 张洪江, 李廷轩, 余海英. 水稻耐镉性差异及镉低积累种质资源的筛选[J]. 中国生态农业学报, 2013, 21 (11): 1434-1440 [Zhang XZ, Zhang HJ, Li TX, Yu HY. Differences in Cd-tolerance of rice and screening for Cd low-accumulation rice germplasm resources [J]. Chin J Eco-agric, 2013, 21 (11): 1434-1440]
12. 刘春梅, 罗盛国, 刘元英. 硒对镉胁迫下寒地水稻镉含量与分配的影响[J]. 植物营养与肥料学报, 2015, 21 (1): 190-199 [Liu CM, Luo GS, Liu YY. Effects of Se on Cd content and distribution in rice plant under Cd stress in cold climate [J]. J Plant Nutr Fertil Sci, 2015, 21 (1): 190-199]
13. 任艳芳, 何俊瑜, 周国强, 王阳阳. 镨对镉胁迫下水稻幼苗根系生长和根系形态的影响[J]. 生态环境学报, 2010, 19 (1): 102-107 [Ren YF, He JY, Zhou GQ, Wang YY. Effects of praseodymium on root growth and morphological characteristics of rice seedlings under cadmium stress [J]. Ecol Environ, 2010, 19 (1): 102-107]
14. 高宇, 程潜, 张梦君, 朱振宇, 胡婷婷, 杨宇. 镉污染土壤修复技术研究[J]. 生物技术通报, 2017, 33 (10): 103-110 [Gao Y, Chen Q, Zhang MJ, Zhu ZY, Hu TT, Yang Y. Research advance on remediation technology of cadmium contaminated soil [J]. Biotechnol Bull, 2017, 33 (10): 103-110]
15. Liu YL, Tie BQ, Li YXL, Lei M, Wei XD, Liu XL, Du HH. Inoculation of soil with cadmium-resistant bacterium Delftia sp. B9 reduces cadmium accumulation in rice (Oryza sativa L.) grains [J]. Ecotoxicol Environ Saf, 2018, 163: 223-229
16. Siripornadulsil S, Siripornadulsil W. Cadmium-tolerant bacteria reduce the uptake of cadmium in rice: potential for microbial bioremediation [J]. Ecotoxicol Environ Saf. 2013, 94: 94-103
17. Mitra S, Pramanik K, Sarkar A, Ghosh PK, Soren T, Maiti TK. Bioaccumulation of cadmium by Enterobacter sp. and enhancement of rice seedling growth under cadmium stress [J]. Ecotoxicol Environ Saf, 2018, 156: 183-196.
18. 中华人民共和国环境保护部. GB 15618—2008 土壤环境质量标准[S]. 北京: 中国环境科学出版社, 2015 [Ministry of Environmental Protection of the People’s Republic of China.GB 15618—2008 Environmental Quality Standard for Soils [S]. Beijing: China Environmental Science Press, 2015]
19. 刘红娟, 张慧, 党志, 易筱筠, 杨琛. 一株耐镉细菌的分离及富集Cd的机理[J]. 环境工程学报, 2009, 3 (2): 367-371 [Liu HJ, Zhang H, Dang Z, Yi XY, Yang C. Isolation and bio-accumulation mechanisms of a Cd-resisting bacterium [J]. Chin J Environ Eng, 2009, 3 (2): 367-371]
20. 周丽平, 袁亮, 赵炳强, 李燕婷, 林治安, 不同用量风化煤腐殖酸对玉米根系的影响[J]. 中国农业科学, 2019, 52 (2): 285-292 [Zhou LP, Yuan L, Zhao BQ, Li YT, Lin ZA. Response of maize roots to different additive amounts of weathered coal humic acids [J]. Sci Agric Sin, 2019, 52 (2): 285-292.
21. 史静, 潘根兴, 夏运生, 张仕颖, 张乃明. 镉胁迫对两品种水稻生长及抗氧化酶系统的影响[J]. 生态环境学报, 2013, 22 (5): 832-837.[Shi J, Pan GX, Xia YS, Zhang SY, Zhang NM. Effects of Cd on different rice growth and antioxidant enzyme system [J]. Ecol Environ Sci, 2013, 22 (5): 832-837]
22. Sharma RK, Archana G. Cadmium minimization in food crops by cadmium resistant plant growth promoting rhizobacteria [J]. Appl Soil Ecol, 2016, 107: 66-78.
23. 周丽英, 叶仁杰, 林淑婷, 刘杰, 肖清铁, 林素兰, 李艺, 林文熊, 林瑞余. 水稻根际耐镉细菌的筛选与鉴定[J]. 中国生态农业学报, 2012, 20 (5): 597-603 [Zhou LY, Ye RJ, Lin ST, Liu J, Xiao QT, Li Y, Lin WX, Lin YR . Screening and identification of cadmium-tolerant bacteria from rhizosphere soils under rice [J]. Chin J Eco-Agric, 2012, 20 (5): 597-603]
24. 王小波, 李学如, 茆灿泉, 江南屏, 郭泰林. 耐镉马克思克鲁维酵母重金属镉吸附特性的研究[J]. 菌物学报, 2013, 32 (5): 868-875 [Wang XB, Li XR, Mao CQ, Jiang NP, Guo TL. The characteristics of cadmium adsorption by Cd-resisting Kluyveromyces marxianus YS-K1 [J]. Mycosystema, 2013, 32 (5): 868-875]
25. 林晓燕, 牟仁祥, 曹赵云, 朱智伟, 陈学铭. 耐镉细菌菌株的分离及其吸附镉机理研究[J]. 农业环境科学学报, 2015, 34 (9): 1700-1706 [Lin XY, Mou RX, Cao ZY, Zhu XW, Chen XM. Isolation and cadmium adsorption mechanisms of cadmium-resistant bacteria strains [J]. J Agro-Environ Sci, 2015, 34 (9): 1700-1706]
26. 付瑾, 钱学辉, 钱林, 柳建设. 皮氏罗尔斯通氏菌株DX-T3-01的耐镉性能及镉富集机理[J]. 应用与环境生物学报, 2011, 17 (5): 717-721 [Fu J, Qian XH, Qian L, Liu JS. Cadmium tolerance and bio-accumulation mechanisms of Ralstonia pickettii strain DX-T3-01 [J]. Chin J Appl Environ Biol, 2011, 17 (5): 717-721]
27. 燕传明, 贺卓, 葛占标, 盛下放, 何琳燕. 两种重金属抗性细菌对铅镉吸附特性的比较研究[J]. 环境科学学报, 2018, 38 (9): 3597-3604 [Yan CM, He Z, Ge ZB. Sheng XF, He LY. Comparative study on adsorption characteristics of lead and cadmium by two heavy metal resistant bacteria [J]. Acta Sci Circumst, 2018, 38 (9): 3597-3604]
28. 李艳梅, 王琼瑶, 涂卫国, 崔永亮, 钟玘狄, 李俐珩, 陈强, 余秀梅. 镍胁迫下产铁载体细菌对花生的促生性[J]. 微生物学通报, 2017, 44 (8): 1882-1890 [Li YM, Wang QY, Tu WG, Cui YL, Zhong QD, Li LQ, Chen Q, Yu XM. Growth promoting activity of siderophore secreting bacteria for peanut plant under nickel stress [J]. Microbiol Chin, 2017, 44 (8): 1882-1890]
29. 何俊瑜, 王阳阳, 任艳芳, 周国强, 杨梁静. 镉胁迫对不同水稻品种幼苗根系形态和生理特性的影响[J]. 生态环境学报, 2009, 18 (5): 1863-1868 [He JY, Wang YY, Ren YF, Zhou GQ, Yang LJ. Effect of cadmium on root morphology and physiological characteristics of rice seedlings [J]. Ecol Environ Sci, 2009, 18 (5): 1863-1868]
30. Belimov AA, Dietz KJ. Effect of associative bacteria on element composition of barley seedlings grown in solution culture at toxic cadmium concentrations [J]. Microbiol Res, 2000, 155 (2): 113-121

Memo

Memo:
-
Last Update: 2019-06-25